Spaces:
Running
on
A10G
Running
on
A10G
Commit
·
716f49f
1
Parent(s):
2bd5f25
improve
Browse files
app.py
CHANGED
|
@@ -1,244 +1,216 @@
|
|
| 1 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
-
import utils
|
| 6 |
-
import datetime
|
| 7 |
import time
|
| 8 |
import psutil
|
| 9 |
import random
|
| 10 |
|
| 11 |
|
| 12 |
start_time = time.time()
|
| 13 |
-
is_colab = utils.is_google_colab()
|
| 14 |
-
state = None
|
| 15 |
current_steps = 25
|
| 16 |
|
|
|
|
| 17 |
class Model:
|
| 18 |
def __init__(self, name, path=""):
|
| 19 |
self.name = name
|
| 20 |
self.path = path
|
| 21 |
-
self.pipe_t2i = None
|
| 22 |
-
self.pipe_i2i = None
|
| 23 |
-
|
| 24 |
-
models = [
|
| 25 |
-
Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
| 26 |
-
Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
| 27 |
-
Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"),
|
| 28 |
-
Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
| 29 |
-
Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
| 30 |
-
]
|
| 31 |
-
|
| 32 |
-
custom_model = None
|
| 33 |
-
if is_colab:
|
| 34 |
-
models.insert(0, Model("Custom model"))
|
| 35 |
-
custom_model = models[0]
|
| 36 |
-
|
| 37 |
-
last_mode = "txt2img"
|
| 38 |
-
current_model = models[1] if is_colab else models[0]
|
| 39 |
-
current_model_path = current_model.path
|
| 40 |
-
|
| 41 |
-
if is_colab:
|
| 42 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 43 |
-
current_model.path,
|
| 44 |
-
torch_dtype=torch.float16,
|
| 45 |
-
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 46 |
-
safety_checker=lambda images, clip_input: (images, False)
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
else:
|
| 50 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 51 |
-
current_model.path,
|
| 52 |
-
torch_dtype=torch.float16,
|
| 53 |
-
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
if torch.cuda.is_available():
|
| 57 |
-
pipe = pipe.to("cuda")
|
| 58 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 59 |
-
|
| 60 |
-
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 61 |
-
|
| 62 |
-
def error_str(error, title="Error"):
|
| 63 |
-
return f"""#### {title}
|
| 64 |
-
{error}""" if error else ""
|
| 65 |
-
|
| 66 |
-
def update_state(new_state):
|
| 67 |
-
global state
|
| 68 |
-
state = new_state
|
| 69 |
-
|
| 70 |
-
def update_state_info(old_state):
|
| 71 |
-
if state and state != old_state:
|
| 72 |
-
return gr.update(value=state)
|
| 73 |
-
|
| 74 |
-
def custom_model_changed(path):
|
| 75 |
-
models[0].path = path
|
| 76 |
-
global current_model
|
| 77 |
-
current_model = models[0]
|
| 78 |
-
|
| 79 |
-
def on_model_change(model_name):
|
| 80 |
-
|
| 81 |
-
prefix = "Enter prefix"
|
| 82 |
-
|
| 83 |
-
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
| 84 |
-
|
| 85 |
-
def on_steps_change(steps):
|
| 86 |
-
global current_steps
|
| 87 |
-
current_steps = steps
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
print(psutil.virtual_memory()) # print memory usage
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
if seed == 0:
|
| 106 |
-
seed = random.randint(0, 2147483647)
|
| 107 |
|
| 108 |
-
|
| 109 |
|
| 110 |
-
try:
|
| 111 |
-
if img is not None:
|
| 112 |
-
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 113 |
-
else:
|
| 114 |
-
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 115 |
-
except Exception as e:
|
| 116 |
-
return None, error_str(e)
|
| 117 |
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
update_state(f"Loading {current_model.name} text-to-image model...")
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
else:
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
result = pipe(
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
# update_state(f"Done. Seed: {seed}")
|
| 163 |
-
|
| 164 |
-
return replace_nsfw_images(result)
|
| 165 |
-
|
| 166 |
-
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
| 167 |
|
| 168 |
-
|
| 169 |
|
| 170 |
-
|
| 171 |
-
global pipe
|
| 172 |
-
global current_model_path
|
| 173 |
-
if model_path != current_model_path or last_mode != "img2img":
|
| 174 |
-
current_model_path = model_path
|
| 175 |
|
| 176 |
-
update_state(f"Loading {current_model.name} image-to-image model...")
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
last_mode = "img2img"
|
| 198 |
|
| 199 |
ratio = min(height / img.height, width / img.width)
|
| 200 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
|
|
|
| 201 |
result = pipe(
|
| 202 |
prompt,
|
| 203 |
-
negative_prompt
|
| 204 |
num_images_per_prompt=n_images,
|
| 205 |
-
image
|
| 206 |
-
num_inference_steps
|
| 207 |
-
strength
|
| 208 |
-
guidance_scale
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
# update_state(f"Done. Seed: {seed}")
|
| 215 |
-
|
| 216 |
return replace_nsfw_images(result)
|
| 217 |
|
| 218 |
-
def replace_nsfw_images(results):
|
| 219 |
|
| 220 |
-
|
| 221 |
-
return results.images
|
| 222 |
-
|
| 223 |
for i in range(len(results.images)):
|
| 224 |
-
|
| 225 |
-
|
| 226 |
return results.images
|
| 227 |
|
| 228 |
-
|
| 229 |
-
# """
|
| 230 |
with gr.Blocks(css="style.css") as demo:
|
| 231 |
gr.HTML(
|
| 232 |
-
|
| 233 |
<div class="finetuned-diffusion-div">
|
| 234 |
<div>
|
| 235 |
<h1>Protogen Diffusion</h1>
|
| 236 |
</div>
|
| 237 |
<p>
|
| 238 |
-
Demo for multiple fine-tuned Protogen Stable Diffusion models
|
| 239 |
-
</p>
|
| 240 |
-
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
| 241 |
-
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
| 242 |
</p>
|
| 243 |
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
| 244 |
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
|
@@ -246,64 +218,124 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 246 |
"""
|
| 247 |
)
|
| 248 |
with gr.Row():
|
| 249 |
-
|
| 250 |
-
with gr.Column(scale=55):
|
| 251 |
-
with gr.Group():
|
| 252 |
-
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
| 253 |
-
with gr.Box(visible=False) as custom_model_group:
|
| 254 |
-
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release", interactive=True)
|
| 255 |
-
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
| 256 |
-
|
| 257 |
-
with gr.Row():
|
| 258 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt.").style(container=False)
|
| 259 |
-
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# image_out = gr.Image(height=512)
|
| 263 |
-
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
| 264 |
-
|
| 265 |
-
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
| 266 |
-
error_output = gr.Markdown()
|
| 267 |
|
| 268 |
-
with gr.Column(scale=
|
| 269 |
-
with gr.Tab("Options"):
|
| 270 |
with gr.Group():
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
outputs = [gallery, error_output]
|
| 298 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 299 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 300 |
|
| 301 |
-
ex = gr.Examples(
|
| 302 |
-
[
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
-
gr.HTML(
|
|
|
|
| 307 |
<div style="border-top: 1px solid #303030;">
|
| 308 |
<br>
|
| 309 |
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
|
@@ -311,12 +343,10 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 311 |
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
| 312 |
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
| 313 |
</div>
|
| 314 |
-
"""
|
| 315 |
-
|
| 316 |
-
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
| 317 |
|
| 318 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 319 |
|
| 320 |
-
# if not is_colab:
|
| 321 |
demo.queue(concurrency_count=1)
|
| 322 |
-
demo.launch(
|
|
|
|
| 1 |
+
from diffusers import (
|
| 2 |
+
StableDiffusionPipeline,
|
| 3 |
+
StableDiffusionImg2ImgPipeline,
|
| 4 |
+
DPMSolverMultistepScheduler,
|
| 5 |
+
)
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
from PIL import Image
|
|
|
|
|
|
|
| 9 |
import time
|
| 10 |
import psutil
|
| 11 |
import random
|
| 12 |
|
| 13 |
|
| 14 |
start_time = time.time()
|
|
|
|
|
|
|
| 15 |
current_steps = 25
|
| 16 |
|
| 17 |
+
|
| 18 |
class Model:
|
| 19 |
def __init__(self, name, path=""):
|
| 20 |
self.name = name
|
| 21 |
self.path = path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
if path != "":
|
| 24 |
+
self.pipe_t2i = StableDiffusionPipeline.from_pretrained(
|
| 25 |
+
path, torch_dtype=torch.float16
|
| 26 |
+
)
|
| 27 |
+
self.pipe_i2i.scheduler = DPMSolverMultistepScheduler.from_config(
|
| 28 |
+
self.pipe_t2i.scheduler.config
|
| 29 |
+
)
|
| 30 |
+
self.pipe_i2i = StableDiffusionImg2ImgPipeline(
|
| 31 |
+
**self.pipe_t2i.components, torch_dtype=torch.float16
|
| 32 |
+
)
|
| 33 |
+
else:
|
| 34 |
+
self.pipe_t2i = None
|
| 35 |
+
self.pipe_i2i = None
|
| 36 |
|
|
|
|
| 37 |
|
| 38 |
+
models = [
|
| 39 |
+
Model("2.2", "darkstorm2150/Protogen_v2.2_Official_Release"),
|
| 40 |
+
Model("3.4", "darkstorm2150/Protogen_x3.4_Official_Release"),
|
| 41 |
+
# Model("5.3", "darkstorm2150/Protogen_v5.3_Official_Release"),
|
| 42 |
+
# Model("5.8", "darkstorm2150/Protogen_x5.8_Official_Release"),
|
| 43 |
+
# Model("Dragon", "darkstorm2150/Protogen_Dragon_Official_Release"),
|
| 44 |
+
]
|
| 45 |
|
| 46 |
+
MODELS = {m.name: m for m in models}
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
# if torch.cuda.is_available():
|
| 52 |
+
# pipe = pipe.to("cuda")
|
| 53 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
| 54 |
|
|
|
|
| 55 |
|
| 56 |
+
def error_str(error, title="Error"):
|
| 57 |
+
return (
|
| 58 |
+
f"""#### {title}
|
| 59 |
+
{error}"""
|
| 60 |
+
if error
|
| 61 |
+
else ""
|
| 62 |
+
)
|
| 63 |
|
|
|
|
| 64 |
|
| 65 |
+
def inference(
|
| 66 |
+
model_name,
|
| 67 |
+
prompt,
|
| 68 |
+
guidance,
|
| 69 |
+
steps,
|
| 70 |
+
n_images=1,
|
| 71 |
+
width=512,
|
| 72 |
+
height=512,
|
| 73 |
+
seed=0,
|
| 74 |
+
img=None,
|
| 75 |
+
strength=0.5,
|
| 76 |
+
neg_prompt="",
|
| 77 |
+
):
|
| 78 |
+
|
| 79 |
+
print(psutil.virtual_memory()) # print memory usage
|
| 80 |
+
|
| 81 |
+
if seed == 0:
|
| 82 |
+
seed = random.randint(0, 2147483647)
|
| 83 |
+
|
| 84 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
if img is not None:
|
| 88 |
+
return (
|
| 89 |
+
img_to_img(
|
| 90 |
+
model_name,
|
| 91 |
+
prompt,
|
| 92 |
+
n_images,
|
| 93 |
+
neg_prompt,
|
| 94 |
+
img,
|
| 95 |
+
strength,
|
| 96 |
+
guidance,
|
| 97 |
+
steps,
|
| 98 |
+
width,
|
| 99 |
+
height,
|
| 100 |
+
generator,
|
| 101 |
+
seed,
|
| 102 |
+
),
|
| 103 |
+
f"Done. Seed: {seed}",
|
| 104 |
+
)
|
| 105 |
else:
|
| 106 |
+
return (
|
| 107 |
+
txt_to_img(
|
| 108 |
+
model_name,
|
| 109 |
+
prompt,
|
| 110 |
+
n_images,
|
| 111 |
+
neg_prompt,
|
| 112 |
+
guidance,
|
| 113 |
+
steps,
|
| 114 |
+
width,
|
| 115 |
+
height,
|
| 116 |
+
generator,
|
| 117 |
+
seed,
|
| 118 |
+
),
|
| 119 |
+
f"Done. Seed: {seed}",
|
| 120 |
+
)
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return None, error_str(e)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def txt_to_img(
|
| 126 |
+
model_name,
|
| 127 |
+
prompt,
|
| 128 |
+
n_images,
|
| 129 |
+
neg_prompt,
|
| 130 |
+
guidance,
|
| 131 |
+
steps,
|
| 132 |
+
width,
|
| 133 |
+
height,
|
| 134 |
+
generator,
|
| 135 |
+
seed,
|
| 136 |
+
):
|
| 137 |
+
pipe = MODELS[model_name].pipe_t2i
|
| 138 |
+
|
| 139 |
+
if torch.cuda.is_available():
|
| 140 |
+
pipe = pipe.to("cuda")
|
| 141 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 142 |
|
| 143 |
result = pipe(
|
| 144 |
+
prompt,
|
| 145 |
+
negative_prompt=neg_prompt,
|
| 146 |
+
num_images_per_prompt=n_images,
|
| 147 |
+
num_inference_steps=int(steps),
|
| 148 |
+
guidance_scale=guidance,
|
| 149 |
+
width=width,
|
| 150 |
+
height=height,
|
| 151 |
+
generator=generator,
|
| 152 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
pipe.to("cpu")
|
| 155 |
|
| 156 |
+
return replace_nsfw_images(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
|
|
|
| 158 |
|
| 159 |
+
def img_to_img(
|
| 160 |
+
model_name,
|
| 161 |
+
prompt,
|
| 162 |
+
n_images,
|
| 163 |
+
neg_prompt,
|
| 164 |
+
img,
|
| 165 |
+
strength,
|
| 166 |
+
guidance,
|
| 167 |
+
steps,
|
| 168 |
+
width,
|
| 169 |
+
height,
|
| 170 |
+
generator,
|
| 171 |
+
seed,
|
| 172 |
+
):
|
| 173 |
+
pipe = MODELS[model_name].pipe_i2i
|
| 174 |
+
|
| 175 |
+
if torch.cuda.is_available():
|
| 176 |
+
pipe = pipe.to("cuda")
|
| 177 |
+
pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 178 |
|
| 179 |
ratio = min(height / img.height, width / img.width)
|
| 180 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
| 181 |
+
|
| 182 |
result = pipe(
|
| 183 |
prompt,
|
| 184 |
+
negative_prompt=neg_prompt,
|
| 185 |
num_images_per_prompt=n_images,
|
| 186 |
+
image=img,
|
| 187 |
+
num_inference_steps=int(steps),
|
| 188 |
+
strength=strength,
|
| 189 |
+
guidance_scale=guidance,
|
| 190 |
+
generator=generator,
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
pipe.to("cpu")
|
| 194 |
+
|
|
|
|
|
|
|
| 195 |
return replace_nsfw_images(result)
|
| 196 |
|
|
|
|
| 197 |
|
| 198 |
+
def replace_nsfw_images(results):
|
|
|
|
|
|
|
| 199 |
for i in range(len(results.images)):
|
| 200 |
+
if results.nsfw_content_detected[i]:
|
| 201 |
+
results.images[i] = Image.open("nsfw.png")
|
| 202 |
return results.images
|
| 203 |
|
| 204 |
+
|
|
|
|
| 205 |
with gr.Blocks(css="style.css") as demo:
|
| 206 |
gr.HTML(
|
| 207 |
+
"""
|
| 208 |
<div class="finetuned-diffusion-div">
|
| 209 |
<div>
|
| 210 |
<h1>Protogen Diffusion</h1>
|
| 211 |
</div>
|
| 212 |
<p>
|
| 213 |
+
Demo for multiple fine-tuned Protogen Stable Diffusion models.
|
|
|
|
|
|
|
|
|
|
| 214 |
</p>
|
| 215 |
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
|
| 216 |
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
|
|
|
| 218 |
"""
|
| 219 |
)
|
| 220 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
with gr.Column(scale=55):
|
|
|
|
| 223 |
with gr.Group():
|
| 224 |
+
model_name = gr.Dropdown(
|
| 225 |
+
label="Model",
|
| 226 |
+
choices=[m.name for m in models],
|
| 227 |
+
value=models[0].name,
|
| 228 |
+
)
|
| 229 |
+
with gr.Box(visible=False) as custom_model_group:
|
| 230 |
+
custom_model_path = gr.Textbox(
|
| 231 |
+
label="Custom model path",
|
| 232 |
+
placeholder="Path to model, e.g. darkstorm2150/Protogen_x3.4_Official_Release",
|
| 233 |
+
interactive=True,
|
| 234 |
+
)
|
| 235 |
+
gr.HTML(
|
| 236 |
+
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
with gr.Row():
|
| 240 |
+
prompt = gr.Textbox(
|
| 241 |
+
label="Prompt",
|
| 242 |
+
show_label=False,
|
| 243 |
+
max_lines=2,
|
| 244 |
+
placeholder="Enter prompt.",
|
| 245 |
+
).style(container=False)
|
| 246 |
+
generate = gr.Button(value="Generate").style(
|
| 247 |
+
rounded=(False, True, True, False)
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# image_out = gr.Image(height=512)
|
| 251 |
+
gallery = gr.Gallery(
|
| 252 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
| 253 |
+
).style(grid=[2], height="auto")
|
| 254 |
+
|
| 255 |
+
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
|
| 256 |
+
container=False
|
| 257 |
+
)
|
| 258 |
+
error_output = gr.Markdown()
|
| 259 |
|
| 260 |
+
with gr.Column(scale=45):
|
| 261 |
+
with gr.Tab("Options"):
|
| 262 |
+
with gr.Group():
|
| 263 |
+
neg_prompt = gr.Textbox(
|
| 264 |
+
label="Negative prompt",
|
| 265 |
+
placeholder="What to exclude from the image",
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
n_images = gr.Slider(
|
| 269 |
+
label="Images", value=1, minimum=1, maximum=4, step=1
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
with gr.Row():
|
| 273 |
+
guidance = gr.Slider(
|
| 274 |
+
label="Guidance scale", value=7.5, maximum=15
|
| 275 |
+
)
|
| 276 |
+
steps = gr.Slider(
|
| 277 |
+
label="Steps",
|
| 278 |
+
value=current_steps,
|
| 279 |
+
minimum=2,
|
| 280 |
+
maximum=75,
|
| 281 |
+
step=1,
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Row():
|
| 285 |
+
width = gr.Slider(
|
| 286 |
+
label="Width", value=512, minimum=64, maximum=1024, step=8
|
| 287 |
+
)
|
| 288 |
+
height = gr.Slider(
|
| 289 |
+
label="Height", value=512, minimum=64, maximum=1024, step=8
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
seed = gr.Slider(
|
| 293 |
+
0, 2147483647, label="Seed (0 = random)", value=0, step=1
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
with gr.Tab("Image to image"):
|
| 297 |
+
with gr.Group():
|
| 298 |
+
image = gr.Image(
|
| 299 |
+
label="Image", height=256, tool="editor", type="pil"
|
| 300 |
+
)
|
| 301 |
+
strength = gr.Slider(
|
| 302 |
+
label="Transformation strength",
|
| 303 |
+
minimum=0,
|
| 304 |
+
maximum=1,
|
| 305 |
+
step=0.01,
|
| 306 |
+
value=0.5,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
inputs = [
|
| 310 |
+
model_name,
|
| 311 |
+
prompt,
|
| 312 |
+
guidance,
|
| 313 |
+
steps,
|
| 314 |
+
n_images,
|
| 315 |
+
width,
|
| 316 |
+
height,
|
| 317 |
+
seed,
|
| 318 |
+
image,
|
| 319 |
+
strength,
|
| 320 |
+
neg_prompt,
|
| 321 |
+
]
|
| 322 |
outputs = [gallery, error_output]
|
| 323 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 324 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 325 |
|
| 326 |
+
ex = gr.Examples(
|
| 327 |
+
[
|
| 328 |
+
[models[2].name, "Brad Pitt with sunglasses, highly realistic", 7.5, 25],
|
| 329 |
+
[models[0].name, "portrait of a beautiful alyx vance half life", 10, 25],
|
| 330 |
+
],
|
| 331 |
+
inputs=[model_name, prompt, guidance, steps],
|
| 332 |
+
outputs=outputs,
|
| 333 |
+
fn=inference,
|
| 334 |
+
cache_examples=False,
|
| 335 |
+
)
|
| 336 |
|
| 337 |
+
gr.HTML(
|
| 338 |
+
"""
|
| 339 |
<div style="border-top: 1px solid #303030;">
|
| 340 |
<br>
|
| 341 |
<p>Models by <a href="https://huggingface.co/darkstorm2150">@darkstorm2150</a> and others. ❤️</p>
|
|
|
|
| 343 |
<p>Space by: Darkstorm (Victor Espinoza)<br>
|
| 344 |
<a href="https://www.instagram.com/officialvictorespinoza/">Instagram</a>
|
| 345 |
</div>
|
| 346 |
+
"""
|
| 347 |
+
)
|
|
|
|
| 348 |
|
| 349 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 350 |
|
|
|
|
| 351 |
demo.queue(concurrency_count=1)
|
| 352 |
+
demo.launch()
|