Spaces:
Runtime error
Runtime error
| import faiss | |
| import numpy as np | |
| import os | |
| from sentence_transformers import SentenceTransformer | |
| from retriever.reranker import rerank_documents | |
| # 1. μλ² λ© λͺ¨λΈ λ‘λ | |
| embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
| # 2. 벑ν°DB (FAISS Index) μ΄κΈ°ν | |
| INDEX_PATH = "data/index/index.faiss" | |
| DOCS_PATH = "data/index/docs.npy" | |
| if os.path.exists(INDEX_PATH) and os.path.exists(DOCS_PATH): | |
| index = faiss.read_index(INDEX_PATH) | |
| documents = np.load(DOCS_PATH, allow_pickle=True) | |
| else: | |
| index = None | |
| documents = None | |
| print("No FAISS index or docs found. Please build the index first.") | |
| # 3. κ²μ ν¨μ | |
| def search_documents(query: str, top_k: int = 5): | |
| if index is None or documents is None: | |
| raise ValueError("Index or documents not loaded. Build the FAISS index first.") | |
| query_vector = embedding_model.encode([query]) | |
| query_vector = np.array(query_vector).astype('float32') | |
| distances, indices = index.search(query_vector, top_k) | |
| results = [] | |
| for idx in indices[0]: | |
| if idx < len(documents): | |
| results.append(documents[idx]) | |
| return results | |
| # # 1. Rough FAISS κ²μ | |
| # query_embedding = embedding_model.encode([query], convert_to_tensor=True).cpu().detach().numpy() | |
| # distances, indices = index.search(query_embedding, top_k) | |
| # results = [documents[idx] for idx in indices[0] if idx != -1] | |
| # # 2. μ λ° Reranking | |
| # reranked_results = rerank_documents(query, results, top_k=top_k) | |
| # return reranked_results | |