Spaces:
Runtime error
Runtime error
File size: 7,773 Bytes
f53096b 1411932 f53096b 1411932 f53096b 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 0a5527f 1411932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
---
title: DeepSeek-OCR
emoji: π
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
tags:
- ocr
- vision-language-model
- document-processing
- vllm
- deepseek
license: mit
---
# DeepSeek-OCR with vLLM
High-performance document OCR using [DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR) with vLLM for efficient batch processing.
## π Quick Start with HuggingFace Jobs
Process any image dataset without needing your own GPU:
```bash
# Basic usage (Gundam mode - adaptive resolution)
hf jobs run --flavor l4x1 \
--secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
input-dataset \
output-dataset
# Quick test with 10 samples
hf jobs run --flavor l4x1 \
--secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
your-input-dataset \
your-output-dataset \
--max-samples 10
```
That's it! The script will:
- β
Process images from your dataset
- β
Add OCR results as a new `markdown` column
- β
Push results to a new dataset with automatic documentation
- π View results at: `https://huggingface.co/datasets/[your-output-dataset]`
## π Features
### Model Capabilities
- π **LaTeX equations** - Mathematical formulas preserved in LaTeX format
- π **Tables** - Extracted and formatted as HTML/markdown
- π **Document structure** - Headers, lists, and formatting maintained
- πΌοΈ **Image grounding** - Spatial layout and bounding box information
- π **Complex layouts** - Multi-column and hierarchical structures
- π **Multilingual** - Supports multiple languages
### Performance
- β‘ **vLLM AsyncEngine** - Optimized for throughput (~2500 tokens/s on A100)
- π― **Multiple resolution modes** - Choose speed vs quality
- π₯ **Large context** - Up to 8K tokens
- πͺ **Batch optimized** - Efficient async processing
## ποΈ Resolution Modes
| Mode | Resolution | Vision Tokens | Best For |
|------|-----------|---------------|----------|
| `tiny` | 512Γ512 | 64 | Fast testing, simple documents |
| `small` | 640Γ640 | 100 | Balanced speed/quality |
| `base` | 1024Γ1024 | 256 | High quality documents |
| `large` | 1280Γ1280 | 400 | Maximum quality, detailed docs |
| `gundam` | Dynamic | Adaptive | Large documents, best overall |
## π» Usage Examples
### Basic Processing
```bash
# Default (Gundam mode)
hf jobs run --flavor l4x1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
my-images-dataset \
ocr-results
```
### Fast Processing for Testing
```bash
hf jobs run --flavor l4x1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
large-dataset \
test-output \
--max-samples 100
```
### Random Sampling
```bash
hf jobs run --flavor l4x1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
ordered-dataset \
random-sample \
--max-samples 50 \
--shuffle \
--seed 42
```
### Custom Image Column
```bash
hf jobs run --flavor a10g-large --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
davanstrien/ufo-ColPali \
ufo-ocr \
--image-column image
```
### Private Output Dataset
```bash
hf jobs run --flavor l4x1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python process_dataset.py \
private-input \
private-output \
--private
```
## π Command-Line Options
### Required Arguments
| Argument | Description |
|----------|-------------|
| `input_dataset` | Input dataset ID from Hugging Face Hub |
| `output_dataset` | Output dataset ID for Hugging Face Hub |
### Optional Arguments
| Option | Default | Description |
|--------|---------|-------------|
| `--image-column` | `image` | Column containing images |
| `--model` | `deepseek-ai/DeepSeek-OCR` | Model to use |
| `--resolution-mode` | `gundam` | Resolution preset (tiny/small/base/large/gundam) |
| `--max-model-len` | `8192` | Maximum model context length |
| `--max-tokens` | `8192` | Maximum tokens to generate |
| `--gpu-memory-utilization` | `0.75` | GPU memory usage (0.0-1.0) |
| `--prompt` | `<image>\n<\|grounding\|>Convert...` | Custom prompt |
| `--hf-token` | - | Hugging Face API token (or use env var) |
| `--split` | `train` | Dataset split to process |
| `--max-samples` | None | Limit samples (for testing) |
| `--private` | False | Make output dataset private |
| `--shuffle` | False | Shuffle dataset before processing |
| `--seed` | `42` | Random seed for shuffling |
## π Output Format
The script adds two new columns to your dataset:
1. **`markdown`** - The OCR text in markdown format
2. **`inference_info`** - JSON metadata about the processing
### Inference Info Structure
```json
[
{
"column_name": "markdown",
"model_id": "deepseek-ai/DeepSeek-OCR",
"processing_date": "2025-10-21T12:00:00",
"resolution_mode": "gundam",
"base_size": 1024,
"image_size": 640,
"crop_mode": true,
"prompt": "<image>\n<|grounding|>Convert the document to markdown.",
"max_tokens": 8192,
"gpu_memory_utilization": 0.75,
"max_model_len": 8192,
"script": "main.py",
"script_version": "1.0.0",
"space_url": "https://huggingface.co/spaces/davanstrien/deepseek-ocr",
"implementation": "vllm-async (optimized)"
}
]
```
## π§ Technical Details
### Architecture
- **Model**: DeepSeek-OCR (3B parameters, based on Qwen2.5-VL)
- **Inference Engine**: vLLM 0.8.5 with AsyncEngine
- **Image Preprocessing**: Custom dynamic tiling based on aspect ratio
- **Vision Encoders**: Custom CLIP + SAM encoders
- **Context Length**: Up to 8K tokens
- **Optimization**: Flash Attention 2.7.3, async batch processing
### Hardware Requirements
- **Minimum**: L4 GPU (24GB VRAM) - `--flavor l4x1`
- **Recommended**: L40S/A10G (48GB VRAM) - `--flavor l40sx1` or `--flavor a10g-large`
- **Maximum Performance**: A100 (40GB+ VRAM) - `--flavor a100-large`
### Speed Benchmarks
| GPU | Resolution | Speed | Notes |
|-----|-----------|-------|-------|
| L4 | Tiny | ~5-8 img/s | Good for testing |
| L4 | Gundam | ~2-3 img/s | Balanced |
| A100 | Gundam | ~8-12 img/s | Production speed |
| A100 | Large | ~5-7 img/s | Maximum quality |
## π Example Workflows
### 1. Process Historical Documents
```bash
hf jobs run --flavor l40sx1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python main.py \
historical-scans \
historical-text \
--resolution-mode large \
--shuffle
```
### 2. Extract Tables from Reports
```bash
hf jobs run --flavor a10g-large --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python main.py \
financial-reports \
extracted-tables \
--resolution-mode gundam \
--prompt "<image>\n<|grounding|>Convert the document to markdown."
```
### 3. Multi-language Documents
```bash
hf jobs run --flavor l4x1 --secrets HF_TOKEN \
hf.co/spaces/davanstrien/deepseek-ocr \
python main.py \
multilingual-docs \
ocr-output \
--resolution-mode base
```
## π Related Resources
- **Model**: [deepseek-ai/DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR)
- **vLLM**: [vllm-project/vllm](https://github.com/vllm-project/vllm)
- **HF Jobs**: [Documentation](https://huggingface.co/docs/huggingface_hub/en/guides/jobs)
## π License
MIT License - See model card for details
## π Acknowledgments
- DeepSeek AI for the OCR model
- vLLM team for the inference engine
- Hugging Face for Jobs infrastructure
---
Built with β€οΈ using [vLLM](https://github.com/vllm-project/vllm) and [DeepSeek-OCR](https://huggingface.co/deepseek-ai/DeepSeek-OCR)
|