Spaces:
Runtime error
Runtime error
Commit
·
b7b3c0d
1
Parent(s):
0a5527f
Switch to batch processing pattern from official run_dpsk_ocr_eval_batch.py
Browse files- Use LLM class instead of AsyncLLMEngine (fixes segfault)
- Use ThreadPoolExecutor for parallel image preprocessing
- Single llm.generate() call for true batch processing
- Added max_num_seqs and num_workers parameters
- Mirrors official DeepSeek batch processing script
- process_dataset.py +59 -58
process_dataset.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
DeepSeek-OCR Dataset Processing
|
| 4 |
-
Minimal adaptation of official
|
| 5 |
"""
|
| 6 |
|
| 7 |
import argparse
|
| 8 |
-
import asyncio
|
| 9 |
import json
|
| 10 |
import os
|
| 11 |
import sys
|
| 12 |
-
import time
|
| 13 |
from datetime import datetime
|
|
|
|
| 14 |
|
| 15 |
import torch
|
| 16 |
if torch.version.cuda == '11.8':
|
|
@@ -18,13 +17,12 @@ if torch.version.cuda == '11.8':
|
|
| 18 |
|
| 19 |
os.environ['VLLM_USE_V1'] = '0'
|
| 20 |
|
| 21 |
-
from vllm import
|
| 22 |
-
from vllm.engine.arg_utils import AsyncEngineArgs
|
| 23 |
from vllm.model_executor.models.registry import ModelRegistry
|
| 24 |
from PIL import Image, ImageOps
|
| 25 |
from tqdm.auto import tqdm
|
| 26 |
from datasets import load_dataset
|
| 27 |
-
from huggingface_hub import
|
| 28 |
|
| 29 |
# Import DeepSeek-OCR modules (unchanged from original)
|
| 30 |
from deepseek_ocr import DeepseekOCRForCausalLM
|
|
@@ -44,27 +42,19 @@ def check_cuda():
|
|
| 44 |
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 45 |
|
| 46 |
|
| 47 |
-
|
| 48 |
-
"""
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
request = {"prompt": prompt}
|
| 58 |
-
|
| 59 |
-
final_output = ""
|
| 60 |
-
async for request_output in engine.generate(request, sampling_params, request_id):
|
| 61 |
-
if request_output.outputs:
|
| 62 |
-
final_output = request_output.outputs[0].text
|
| 63 |
-
|
| 64 |
-
return final_output.strip()
|
| 65 |
|
| 66 |
|
| 67 |
-
|
| 68 |
"""Main processing function"""
|
| 69 |
check_cuda()
|
| 70 |
|
|
@@ -95,23 +85,24 @@ async def main_async(args):
|
|
| 95 |
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
| 96 |
print(f"Processing {len(dataset)} samples")
|
| 97 |
|
| 98 |
-
# Initialize vLLM engine (UNCHANGED from
|
| 99 |
print("Initializing vLLM engine...")
|
| 100 |
-
|
| 101 |
model=MODEL_PATH,
|
| 102 |
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
|
| 103 |
block_size=256,
|
| 104 |
-
max_model_len=args.max_model_len,
|
| 105 |
enforce_eager=False,
|
| 106 |
trust_remote_code=True,
|
|
|
|
|
|
|
|
|
|
| 107 |
tensor_parallel_size=1,
|
| 108 |
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 109 |
)
|
| 110 |
-
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
| 111 |
|
| 112 |
-
# Sampling params (UNCHANGED from
|
| 113 |
logits_processors = [NoRepeatNGramLogitsProcessor(
|
| 114 |
-
ngram_size=
|
| 115 |
)]
|
| 116 |
|
| 117 |
sampling_params = SamplingParams(
|
|
@@ -121,37 +112,44 @@ async def main_async(args):
|
|
| 121 |
skip_special_tokens=False,
|
| 122 |
)
|
| 123 |
|
| 124 |
-
#
|
| 125 |
-
print(f"
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
for idx in tqdm(range(len(dataset)), desc="OCR processing"):
|
| 130 |
try:
|
| 131 |
-
# Load image
|
| 132 |
image = dataset[idx][args.image_column]
|
| 133 |
if not isinstance(image, Image.Image):
|
| 134 |
image = Image.open(image) if isinstance(image, str) else image
|
| 135 |
-
|
| 136 |
image = ImageOps.exif_transpose(image.convert('RGB'))
|
| 137 |
-
|
| 138 |
-
# Preprocess image (UNCHANGED from original)
|
| 139 |
-
if '<image>' in PROMPT:
|
| 140 |
-
image_features = processor.tokenize_with_images(
|
| 141 |
-
images=[image], bos=True, eos=True, cropping=CROP_MODE
|
| 142 |
-
)
|
| 143 |
-
else:
|
| 144 |
-
image_features = ''
|
| 145 |
-
|
| 146 |
-
# Process
|
| 147 |
-
result = await process_single_image(
|
| 148 |
-
engine, sampling_params, image_features, PROMPT
|
| 149 |
-
)
|
| 150 |
-
all_markdown.append(result)
|
| 151 |
-
|
| 152 |
except Exception as e:
|
| 153 |
-
print(f"Error
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
# Add markdown column
|
| 157 |
print("Adding markdown column...")
|
|
@@ -177,8 +175,9 @@ async def main_async(args):
|
|
| 177 |
"max_tokens": args.max_tokens,
|
| 178 |
"max_model_len": args.max_model_len,
|
| 179 |
"gpu_memory_utilization": args.gpu_memory_utilization,
|
|
|
|
| 180 |
"script": "process_dataset.py",
|
| 181 |
-
"implementation": "vllm-
|
| 182 |
}
|
| 183 |
existing_info.append(new_info)
|
| 184 |
|
|
@@ -207,8 +206,10 @@ if __name__ == "__main__":
|
|
| 207 |
parser.add_argument("--max-model-len", type=int, default=8192)
|
| 208 |
parser.add_argument("--max-tokens", type=int, default=8192)
|
| 209 |
parser.add_argument("--gpu-memory-utilization", type=float, default=0.75)
|
|
|
|
|
|
|
| 210 |
parser.add_argument("--hf-token", help="HF API token")
|
| 211 |
parser.add_argument("--private", action="store_true", help="Make output private")
|
| 212 |
|
| 213 |
args = parser.parse_args()
|
| 214 |
-
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
DeepSeek-OCR Dataset Processing
|
| 4 |
+
Minimal adaptation of official run_dpsk_ocr_eval_batch.py for dataset processing
|
| 5 |
"""
|
| 6 |
|
| 7 |
import argparse
|
|
|
|
| 8 |
import json
|
| 9 |
import os
|
| 10 |
import sys
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 13 |
|
| 14 |
import torch
|
| 15 |
if torch.version.cuda == '11.8':
|
|
|
|
| 17 |
|
| 18 |
os.environ['VLLM_USE_V1'] = '0'
|
| 19 |
|
| 20 |
+
from vllm import LLM, SamplingParams
|
|
|
|
| 21 |
from vllm.model_executor.models.registry import ModelRegistry
|
| 22 |
from PIL import Image, ImageOps
|
| 23 |
from tqdm.auto import tqdm
|
| 24 |
from datasets import load_dataset
|
| 25 |
+
from huggingface_hub import login
|
| 26 |
|
| 27 |
# Import DeepSeek-OCR modules (unchanged from original)
|
| 28 |
from deepseek_ocr import DeepseekOCRForCausalLM
|
|
|
|
| 42 |
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 43 |
|
| 44 |
|
| 45 |
+
def process_single_image(image):
|
| 46 |
+
"""Preprocess single image (unchanged from official batch script)"""
|
| 47 |
+
prompt_in = PROMPT
|
| 48 |
+
cache_item = {
|
| 49 |
+
"prompt": prompt_in,
|
| 50 |
+
"multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(
|
| 51 |
+
images=[image], bos=True, eos=True, cropping=CROP_MODE
|
| 52 |
+
)},
|
| 53 |
+
}
|
| 54 |
+
return cache_item
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
+
def main(args):
|
| 58 |
"""Main processing function"""
|
| 59 |
check_cuda()
|
| 60 |
|
|
|
|
| 85 |
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
| 86 |
print(f"Processing {len(dataset)} samples")
|
| 87 |
|
| 88 |
+
# Initialize vLLM engine (UNCHANGED from official batch script)
|
| 89 |
print("Initializing vLLM engine...")
|
| 90 |
+
llm = LLM(
|
| 91 |
model=MODEL_PATH,
|
| 92 |
hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
|
| 93 |
block_size=256,
|
|
|
|
| 94 |
enforce_eager=False,
|
| 95 |
trust_remote_code=True,
|
| 96 |
+
max_model_len=args.max_model_len,
|
| 97 |
+
swap_space=0,
|
| 98 |
+
max_num_seqs=args.max_num_seqs,
|
| 99 |
tensor_parallel_size=1,
|
| 100 |
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 101 |
)
|
|
|
|
| 102 |
|
| 103 |
+
# Sampling params (UNCHANGED from official batch script)
|
| 104 |
logits_processors = [NoRepeatNGramLogitsProcessor(
|
| 105 |
+
ngram_size=40, window_size=90, whitelist_token_ids={128821, 128822}
|
| 106 |
)]
|
| 107 |
|
| 108 |
sampling_params = SamplingParams(
|
|
|
|
| 112 |
skip_special_tokens=False,
|
| 113 |
)
|
| 114 |
|
| 115 |
+
# Load and preprocess images
|
| 116 |
+
print(f"Loading images from dataset...")
|
| 117 |
+
images = []
|
| 118 |
+
for idx in range(len(dataset)):
|
|
|
|
|
|
|
| 119 |
try:
|
|
|
|
| 120 |
image = dataset[idx][args.image_column]
|
| 121 |
if not isinstance(image, Image.Image):
|
| 122 |
image = Image.open(image) if isinstance(image, str) else image
|
|
|
|
| 123 |
image = ImageOps.exif_transpose(image.convert('RGB'))
|
| 124 |
+
images.append(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"Error loading image {idx}: {e}")
|
| 127 |
+
images.append(None)
|
| 128 |
+
|
| 129 |
+
# Preprocess images in parallel (UNCHANGED from official batch script)
|
| 130 |
+
print(f"Preprocessing images...")
|
| 131 |
+
with ThreadPoolExecutor(max_workers=args.num_workers) as executor:
|
| 132 |
+
batch_inputs = list(tqdm(
|
| 133 |
+
executor.map(lambda img: process_single_image(img) if img else None, images),
|
| 134 |
+
total=len(images),
|
| 135 |
+
desc="Pre-processing images"
|
| 136 |
+
))
|
| 137 |
+
|
| 138 |
+
# Filter out None entries and track their indices
|
| 139 |
+
valid_indices = [i for i, inp in enumerate(batch_inputs) if inp is not None]
|
| 140 |
+
valid_batch_inputs = [inp for inp in batch_inputs if inp is not None]
|
| 141 |
+
|
| 142 |
+
# Batch inference (UNCHANGED from official batch script)
|
| 143 |
+
print(f"Running batch inference on {len(valid_batch_inputs)} images...")
|
| 144 |
+
outputs_list = llm.generate(
|
| 145 |
+
valid_batch_inputs,
|
| 146 |
+
sampling_params=sampling_params
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Extract results
|
| 150 |
+
all_markdown = ["[OCR FAILED]"] * len(dataset)
|
| 151 |
+
for idx, output in zip(valid_indices, outputs_list):
|
| 152 |
+
all_markdown[idx] = output.outputs[0].text.strip()
|
| 153 |
|
| 154 |
# Add markdown column
|
| 155 |
print("Adding markdown column...")
|
|
|
|
| 175 |
"max_tokens": args.max_tokens,
|
| 176 |
"max_model_len": args.max_model_len,
|
| 177 |
"gpu_memory_utilization": args.gpu_memory_utilization,
|
| 178 |
+
"max_num_seqs": args.max_num_seqs,
|
| 179 |
"script": "process_dataset.py",
|
| 180 |
+
"implementation": "vllm-batch (official deepseek batch code)",
|
| 181 |
}
|
| 182 |
existing_info.append(new_info)
|
| 183 |
|
|
|
|
| 206 |
parser.add_argument("--max-model-len", type=int, default=8192)
|
| 207 |
parser.add_argument("--max-tokens", type=int, default=8192)
|
| 208 |
parser.add_argument("--gpu-memory-utilization", type=float, default=0.75)
|
| 209 |
+
parser.add_argument("--max-num-seqs", type=int, default=100, help="Max concurrent sequences")
|
| 210 |
+
parser.add_argument("--num-workers", type=int, default=64, help="Image preprocessing workers")
|
| 211 |
parser.add_argument("--hf-token", help="HF API token")
|
| 212 |
parser.add_argument("--private", action="store_true", help="Make output private")
|
| 213 |
|
| 214 |
args = parser.parse_args()
|
| 215 |
+
main(args)
|