Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
a302e07
1
Parent(s):
f8148b8
add device detection for model inference and improve dataset collection logging
Browse files
main.py
CHANGED
|
@@ -12,6 +12,7 @@ from contextlib import asynccontextmanager
|
|
| 12 |
import polars as pl
|
| 13 |
from huggingface_hub import HfApi
|
| 14 |
from transformers import AutoTokenizer
|
|
|
|
| 15 |
|
| 16 |
# Configuration constants
|
| 17 |
MODEL_NAME = "davanstrien/SmolLM2-360M-tldr-sft-2025-02-12_15-13"
|
|
@@ -19,6 +20,13 @@ EMBEDDING_MODEL = "nomic-ai/modernbert-embed-base"
|
|
| 19 |
BATCH_SIZE = 1000
|
| 20 |
CACHE_TTL = "60"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
hf_api = HfApi()
|
| 23 |
|
| 24 |
|
|
@@ -72,8 +80,9 @@ app.add_middleware(
|
|
| 72 |
|
| 73 |
# Define the embedding function at module level
|
| 74 |
def get_embedding_function():
|
|
|
|
| 75 |
return embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 76 |
-
model_name="nomic-ai/modernbert-embed-base"
|
| 77 |
)
|
| 78 |
|
| 79 |
|
|
@@ -95,7 +104,7 @@ def setup_database():
|
|
| 95 |
metadata={"hnsw:space": "cosine"},
|
| 96 |
)
|
| 97 |
|
| 98 |
-
#
|
| 99 |
df = pl.scan_parquet(
|
| 100 |
"hf://datasets/davanstrien/datasets_with_metadata_and_summaries/data/train-*.parquet"
|
| 101 |
)
|
|
@@ -103,14 +112,21 @@ def setup_database():
|
|
| 103 |
pl.col("datasetId").str.contains_any(["open-llm-leaderboard-old/"]).not_()
|
| 104 |
)
|
| 105 |
row_count = df.select(pl.len()).collect().item()
|
| 106 |
-
logger.info(f"Row count of
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
# Load parquet files and upsert into ChromaDB
|
| 109 |
df = df.select(
|
| 110 |
["datasetId", "summary", "likes", "downloads", "last_modified"]
|
| 111 |
)
|
| 112 |
df = df.collect()
|
| 113 |
-
BATCH_SIZE = 1000
|
| 114 |
total_rows = len(df)
|
| 115 |
|
| 116 |
for i in range(0, total_rows, BATCH_SIZE):
|
|
@@ -148,7 +164,6 @@ def setup_database():
|
|
| 148 |
["modelId", "summary", "likes", "downloads", "last_modified"]
|
| 149 |
)
|
| 150 |
model_df = model_df.collect()
|
| 151 |
-
BATCH_SIZE = 1000
|
| 152 |
total_rows = len(model_df)
|
| 153 |
|
| 154 |
for i in range(0, total_rows, BATCH_SIZE):
|
|
|
|
| 12 |
import polars as pl
|
| 13 |
from huggingface_hub import HfApi
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
+
import torch
|
| 16 |
|
| 17 |
# Configuration constants
|
| 18 |
MODEL_NAME = "davanstrien/SmolLM2-360M-tldr-sft-2025-02-12_15-13"
|
|
|
|
| 20 |
BATCH_SIZE = 1000
|
| 21 |
CACHE_TTL = "60"
|
| 22 |
|
| 23 |
+
if torch.cuda.is_available():
|
| 24 |
+
DEVICE = "cuda"
|
| 25 |
+
elif torch.backends.mps.is_available():
|
| 26 |
+
DEVICE = "mps"
|
| 27 |
+
else:
|
| 28 |
+
DEVICE = "cpu"
|
| 29 |
+
|
| 30 |
hf_api = HfApi()
|
| 31 |
|
| 32 |
|
|
|
|
| 80 |
|
| 81 |
# Define the embedding function at module level
|
| 82 |
def get_embedding_function():
|
| 83 |
+
logger.info(f"Using device: {DEVICE}")
|
| 84 |
return embedding_functions.SentenceTransformerEmbeddingFunction(
|
| 85 |
+
model_name="nomic-ai/modernbert-embed-base", device=DEVICE
|
| 86 |
)
|
| 87 |
|
| 88 |
|
|
|
|
| 104 |
metadata={"hnsw:space": "cosine"},
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Load dataset data
|
| 108 |
df = pl.scan_parquet(
|
| 109 |
"hf://datasets/davanstrien/datasets_with_metadata_and_summaries/data/train-*.parquet"
|
| 110 |
)
|
|
|
|
| 112 |
pl.col("datasetId").str.contains_any(["open-llm-leaderboard-old/"]).not_()
|
| 113 |
)
|
| 114 |
row_count = df.select(pl.len()).collect().item()
|
| 115 |
+
logger.info(f"Row count of dataset data: {row_count}")
|
| 116 |
+
|
| 117 |
+
# Check if we need to update the collection
|
| 118 |
+
current_count = dataset_collection.count()
|
| 119 |
+
logger.info(f"Current dataset collection count: {current_count}")
|
| 120 |
+
|
| 121 |
+
if current_count < row_count:
|
| 122 |
+
logger.info(
|
| 123 |
+
f"Updating dataset collection with {row_count - current_count} new records"
|
| 124 |
+
)
|
| 125 |
# Load parquet files and upsert into ChromaDB
|
| 126 |
df = df.select(
|
| 127 |
["datasetId", "summary", "likes", "downloads", "last_modified"]
|
| 128 |
)
|
| 129 |
df = df.collect()
|
|
|
|
| 130 |
total_rows = len(df)
|
| 131 |
|
| 132 |
for i in range(0, total_rows, BATCH_SIZE):
|
|
|
|
| 164 |
["modelId", "summary", "likes", "downloads", "last_modified"]
|
| 165 |
)
|
| 166 |
model_df = model_df.collect()
|
|
|
|
| 167 |
total_rows = len(model_df)
|
| 168 |
|
| 169 |
for i in range(0, total_rows, BATCH_SIZE):
|