Spaces:
Sleeping
Sleeping
| import requests | |
| import json | |
| import re | |
| from urllib.parse import quote | |
| def extract_between_tags(text, start_tag, end_tag): | |
| start_index = text.find(start_tag) | |
| end_index = text.find(end_tag, start_index) | |
| return text[start_index+len(start_tag):end_index-len(end_tag)] | |
| class CitationNormalizer(): | |
| def __init__(self, responses, docs): | |
| self.docs = docs | |
| self.responses = responses | |
| self.refs = [] | |
| def normalize_citations(self, summary): | |
| start_tag = "%START_SNIPPET%" | |
| end_tag = "%END_SNIPPET%" | |
| # find all references in the summary | |
| pattern = r'\[\d{1,2}\]' | |
| matches = [match.span() for match in re.finditer(pattern, summary)] | |
| # figure out unique list of references | |
| for match in matches: | |
| start, end = match | |
| response_num = int(summary[start+1:end-1]) | |
| doc_num = self.responses[response_num-1]['documentIndex'] | |
| metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']} | |
| text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag) | |
| if 'url' in metadata.keys(): | |
| url = f"{metadata['url']}#:~:text={quote(text)}" | |
| if url not in self.refs: | |
| self.refs.append(url) | |
| # replace references with markdown links | |
| refs_dict = {url:(inx+1) for inx,url in enumerate(self.refs)} | |
| for match in reversed(matches): | |
| start, end = match | |
| response_num = int(summary[start+1:end-1]) | |
| doc_num = self.responses[response_num-1]['documentIndex'] | |
| metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']} | |
| text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag) | |
| if 'url' in metadata.keys(): | |
| url = f"{metadata['url']}#:~:text={quote(text)}" | |
| citation_inx = refs_dict[url] | |
| summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:] | |
| else: | |
| summary = summary[:start] + summary[end:] | |
| return summary | |
| class VectaraQuery(): | |
| def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None): | |
| self.customer_id = customer_id | |
| self.corpus_ids = corpus_ids | |
| self.api_key = api_key | |
| self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml" | |
| self.conv_id = None | |
| def get_body(self, query_str: str): | |
| corpora_key_list = [{ | |
| 'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.025} | |
| } for corpus_id in self.corpus_ids | |
| ] | |
| return { | |
| 'query': [ | |
| { | |
| 'query': query_str, | |
| 'start': 0, | |
| 'numResults': 50, | |
| 'corpusKey': corpora_key_list, | |
| 'context_config': { | |
| 'sentences_before': 2, | |
| 'sentences_after': 2, | |
| 'start_tag': "%START_SNIPPET%", | |
| 'end_tag': "%END_SNIPPET%", | |
| }, | |
| 'rerankingConfig': | |
| { | |
| 'rerankerId': 272725718, | |
| 'mmrConfig': { | |
| 'diversityBias': 0.3 | |
| } | |
| }, | |
| 'summary': [ | |
| { | |
| 'responseLang': 'eng', | |
| 'maxSummarizedResults': 5, | |
| 'summarizerPromptName': self.prompt_name, | |
| 'chat': { | |
| 'store': True, | |
| 'conversationId': self.conv_id | |
| }, | |
| } | |
| ] | |
| } | |
| ] | |
| } | |
| def get_headers(self): | |
| return { | |
| "Content-Type": "application/json", | |
| "Accept": "application/json", | |
| "customer-id": self.customer_id, | |
| "x-api-key": self.api_key, | |
| "grpc-timeout": "60S" | |
| } | |
| def submit_query(self, query_str: str): | |
| endpoint = f"https://api.vectara.io/v1/query" | |
| body = self.get_body(query_str) | |
| response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) | |
| if response.status_code != 200: | |
| print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
| return "Sorry, something went wrong in my brain. Please try again later." | |
| res = response.json() | |
| top_k = 10 | |
| summary = res['responseSet'][0]['summary'][0]['text'] | |
| responses = res['responseSet'][0]['response'][:top_k] | |
| docs = res['responseSet'][0]['document'] | |
| chat = res['responseSet'][0]['summary'][0].get('chat', None) | |
| if chat and chat['status'] is not None: | |
| st_code = chat['status'] | |
| print(f"Chat query failed with code {st_code}") | |
| if st_code == 'RESOURCE_EXHAUSTED': | |
| self.conv_id = None | |
| return 'Sorry, Vectara chat turns exceeds plan limit.' | |
| return 'Sorry, something went wrong in my brain. Please try again later.' | |
| self.conv_id = chat['conversationId'] if chat else None | |
| summary = CitationNormalizer(responses, docs).normalize_citations(summary) | |
| return summary | |
| def submit_query_streaming(self, query_str: str): | |
| endpoint = f"https://api.vectara.io/v1/stream-query" | |
| body = self.get_body(query_str) | |
| response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) | |
| if response.status_code != 200: | |
| print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
| return "Sorry, something went wrong in my brain. Please try again later." | |
| chunks = [] | |
| accumulated_text = "" # Initialize text accumulation | |
| pattern_max_length = 50 # Example heuristic | |
| for line in response.iter_lines(): | |
| if line: # filter out keep-alive new lines | |
| data = json.loads(line.decode('utf-8')) | |
| res = data['result'] | |
| response_set = res['responseSet'] | |
| if response_set is None: | |
| # grab next chunk and yield it as output | |
| summary = res.get('summary', None) | |
| if summary is None or len(summary)==0: | |
| continue | |
| else: | |
| chat = summary.get('chat', None) | |
| if chat and chat.get('status', None): | |
| st_code = chat['status'] | |
| print(f"Chat query failed with code {st_code}") | |
| if st_code == 'RESOURCE_EXHAUSTED': | |
| self.conv_id = None | |
| return 'Sorry, Vectara chat turns exceeds plan limit.' | |
| return 'Sorry, something went wrong in my brain. Please try again later.' | |
| conv_id = chat.get('conversationId', None) if chat else None | |
| if conv_id: | |
| self.conv_id = conv_id | |
| chunk = summary['text'] | |
| accumulated_text += chunk # Append current chunk to accumulation | |
| if len(accumulated_text) > pattern_max_length: | |
| accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text) | |
| accumulated_text = re.sub(r"\s+\.", ".", accumulated_text) | |
| out_chunk = accumulated_text[:-pattern_max_length] | |
| chunks.append(out_chunk) | |
| yield out_chunk | |
| accumulated_text = accumulated_text[-pattern_max_length:] | |
| if summary['done']: | |
| break | |
| # yield the last piece | |
| if len(accumulated_text) > 0: | |
| accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text) | |
| chunks.append(accumulated_text) | |
| yield accumulated_text | |
| return ''.join(chunks) | |