Spaces:
Build error
Build error
Update app.py
Browse filesAdded garbage collection after quantization and generation.
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, HqqConfig
|
|
@@ -20,6 +23,8 @@ model =\
|
|
| 20 |
quantization_config=quant_config
|
| 21 |
).to(DEVICE)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
#########
|
| 24 |
|
| 25 |
# print("Loading tokenizer & model…")
|
|
@@ -73,6 +78,7 @@ def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_pena
|
|
| 73 |
# xml_tools=TOOLS
|
| 74 |
)
|
| 75 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
| 76 |
with torch.inference_mode():
|
| 77 |
streamer = model.generate(
|
| 78 |
**inputs,
|
|
@@ -85,6 +91,7 @@ def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_pena
|
|
| 85 |
pad_token_id=tokenizer.eos_token_id,
|
| 86 |
streamer=None # we'll yield manually
|
| 87 |
)
|
|
|
|
| 88 |
output_ids = streamer[0][len(inputs.input_ids[0]):]
|
| 89 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 90 |
if isinstance(response, str):
|
|
|
|
| 1 |
+
|
| 2 |
+
import gc
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, HqqConfig
|
|
|
|
| 23 |
quantization_config=quant_config
|
| 24 |
).to(DEVICE)
|
| 25 |
|
| 26 |
+
gc.collect()
|
| 27 |
+
|
| 28 |
#########
|
| 29 |
|
| 30 |
# print("Loading tokenizer & model…")
|
|
|
|
| 78 |
# xml_tools=TOOLS
|
| 79 |
)
|
| 80 |
inputs = tokenizer(text, return_tensors="pt")
|
| 81 |
+
gc.collect()
|
| 82 |
with torch.inference_mode():
|
| 83 |
streamer = model.generate(
|
| 84 |
**inputs,
|
|
|
|
| 91 |
pad_token_id=tokenizer.eos_token_id,
|
| 92 |
streamer=None # we'll yield manually
|
| 93 |
)
|
| 94 |
+
gc.collect()
|
| 95 |
output_ids = streamer[0][len(inputs.input_ids[0]):]
|
| 96 |
response = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 97 |
if isinstance(response, str):
|