Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -41,30 +41,30 @@ MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 42 |
model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
|
| 43 |
|
| 44 |
-
print("Creating quant config")
|
| 45 |
-
qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
|
| 46 |
-
print("Creating quant config successful")
|
| 47 |
-
|
| 48 |
-
print("Creating quantizer")
|
| 49 |
-
quantizer = ORTQuantizer.from_pretrained(model)
|
| 50 |
-
print("Creating quantizer successful")
|
| 51 |
-
# Step 4: Perform quantization saving output in a new directory
|
| 52 |
-
quantized_model_dir = "./quantized_model"
|
| 53 |
-
print("Starting quantization...")
|
| 54 |
-
quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
|
| 55 |
-
print("Quantization was successful. Garbage collecting...")
|
| 56 |
-
|
| 57 |
-
del(quantizer)
|
| 58 |
-
del(qconfig)
|
| 59 |
-
del(model)
|
| 60 |
|
| 61 |
# Run garbage collection again to release memory from quantizer objects
|
| 62 |
gc.collect()
|
| 63 |
|
| 64 |
-
# Step 5: Load the quantized ONNX model for inference
|
| 65 |
-
print("Loading quantized ONNX model for inference...")
|
| 66 |
-
model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
|
| 67 |
-
print("Loading model was succcessful. Garbage collecting.")
|
| 68 |
|
| 69 |
# Garbage collection again after final loading
|
| 70 |
gc.collect()
|
|
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 42 |
model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
|
| 43 |
|
| 44 |
+
# print("Creating quant config")
|
| 45 |
+
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
|
| 46 |
+
# print("Creating quant config successful")
|
| 47 |
+
|
| 48 |
+
# print("Creating quantizer")
|
| 49 |
+
# quantizer = ORTQuantizer.from_pretrained(model)
|
| 50 |
+
# print("Creating quantizer successful")
|
| 51 |
+
# # Step 4: Perform quantization saving output in a new directory
|
| 52 |
+
# quantized_model_dir = "./quantized_model"
|
| 53 |
+
# print("Starting quantization...")
|
| 54 |
+
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
|
| 55 |
+
# print("Quantization was successful. Garbage collecting...")
|
| 56 |
+
|
| 57 |
+
# del(quantizer)
|
| 58 |
+
# del(qconfig)
|
| 59 |
+
# del(model)
|
| 60 |
|
| 61 |
# Run garbage collection again to release memory from quantizer objects
|
| 62 |
gc.collect()
|
| 63 |
|
| 64 |
+
# # Step 5: Load the quantized ONNX model for inference
|
| 65 |
+
# print("Loading quantized ONNX model for inference...")
|
| 66 |
+
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
|
| 67 |
+
# print("Loading model was succcessful. Garbage collecting.")
|
| 68 |
|
| 69 |
# Garbage collection again after final loading
|
| 70 |
gc.collect()
|