Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel | |
| import p2p, generation, inversion | |
| model_id = 'runwayml/stable-diffusion-v1-5' | |
| dtype=torch.float16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Reverse | |
| # ----------------------------- | |
| pipe_reverse = StableDiffusionPipeline.from_pretrained(model_id, | |
| scheduler=DDIMScheduler.from_pretrained(model_id, | |
| subfolder="scheduler"), | |
| ).to(device=device, dtype=dtype) | |
| unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device) | |
| pipe_reverse.unet = unet | |
| pipe_reverse.load_lora_weights("dbaranchuk/icd-lora-sd15", | |
| weight_name='reverse-259-519-779-999.safetensors') | |
| pipe_reverse.fuse_lora() | |
| pipe_reverse.to(device) | |
| # ----------------------------- | |
| # Forward | |
| # ----------------------------- | |
| pipe_forward = StableDiffusionPipeline.from_pretrained(model_id, | |
| scheduler=DDIMScheduler.from_pretrained(model_id, | |
| subfolder="scheduler"), | |
| ).to(device=device, dtype=dtype) | |
| unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device) | |
| pipe_forward.unet = unet | |
| pipe_forward.load_lora_weights("dbaranchuk/icd-lora-sd15", | |
| weight_name='forward-19-259-519-779.safetensors') | |
| pipe_forward.fuse_lora() | |
| pipe_forward.to(device) | |
| # ----------------------------- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(image_path, input_prompt, edited_prompt, guidance, tau, | |
| crs, srs, amplify_factor, amplify_word, | |
| blend_orig, blend_edited, is_replacement): | |
| tokenizer = pipe_forward.tokenizer | |
| noise_scheduler = DDPMScheduler.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", subfolder="scheduler", ) | |
| NUM_REVERSE_CONS_STEPS = 4 | |
| REVERSE_TIMESTEPS = [259, 519, 779, 999] | |
| NUM_FORWARD_CONS_STEPS = 4 | |
| FORWARD_TIMESTEPS = [19, 259, 519, 779] | |
| NUM_DDIM_STEPS = 50 | |
| solver = generation.Generator( | |
| model=pipe_forward, | |
| noise_scheduler=noise_scheduler, | |
| n_steps=NUM_DDIM_STEPS, | |
| forward_cons_model=pipe_forward, | |
| forward_timesteps=FORWARD_TIMESTEPS, | |
| reverse_cons_model=pipe_reverse, | |
| reverse_timesteps=REVERSE_TIMESTEPS, | |
| num_endpoints=NUM_REVERSE_CONS_STEPS, | |
| num_forward_endpoints=NUM_FORWARD_CONS_STEPS, | |
| max_forward_timestep_index=49, | |
| start_timestep=19) | |
| p2p.NUM_DDIM_STEPS = NUM_DDIM_STEPS | |
| p2p.tokenizer = tokenizer | |
| p2p.device = 'cuda' | |
| prompt = [input_prompt] | |
| (image_gt, image_rec), ddim_latent, uncond_embeddings = inversion.invert( | |
| # Playing params | |
| image_path=image_path, | |
| prompt=prompt, | |
| # Fixed params | |
| is_cons_inversion=True, | |
| w_embed_dim=512, | |
| inv_guidance_scale=0.0, | |
| stop_step=50, | |
| solver=solver, | |
| seed=10500) | |
| p2p.NUM_DDIM_STEPS = 4 | |
| p2p.tokenizer = tokenizer | |
| p2p.device = 'cuda' | |
| prompts = [input_prompt, | |
| edited_prompt | |
| ] | |
| # Playing params | |
| cross_replace_steps = {'default_': crs, } | |
| self_replace_steps = srs | |
| blend_word = (((blend_orig,), (blend_edited,))) | |
| eq_params = {"words": (amplify_word,), "values": (amplify_factor,)} | |
| controller = p2p.make_controller(prompts, | |
| is_replacement, # (is_replacement) True if only one word is changed | |
| cross_replace_steps, | |
| self_replace_steps, | |
| blend_word, | |
| eq_params) | |
| tau = tau | |
| image, _ = generation.runner( | |
| # Playing params | |
| guidance_scale=guidance-1, | |
| tau1=tau, # Dynamic guidance if tau < 1.0 | |
| tau2=tau, | |
| # Fixed params | |
| model=pipe_reverse, | |
| is_cons_forward=True, | |
| w_embed_dim=512, | |
| solver=solver, | |
| prompt=prompts, | |
| controller=controller, | |
| num_inference_steps=50, | |
| generator=None, | |
| latent=ddim_latent, | |
| uncond_embeddings=uncond_embeddings, | |
| return_type='image') | |
| image = generation.to_pil_images(image[1, :, :, :]) | |
| return image | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown( | |
| f""" | |
| # β‘ Invertible Consistency Distillation β‘ | |
| # β‘ Text-guided image editing with 8-step iCD-SD1.5 β‘ | |
| This is a demo for [Invertible Consistency Distillation](https://yandex-research.github.io/invertible-cd/), | |
| a diffusion distillation method proposed in [Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps](https://arxiv.org/abs/2406.14539) | |
| by [Yandex Research](https://github.com/yandex-research). | |
| Currently running on {power_device} | |
| """ | |
| ) | |
| gr.Markdown( | |
| "**Please** check the examples to catch the intuition behind the hyperparameters, which are quite important for successful editing. A short description: <br />1. *Dynamic guidance tau*. Controls the interval where guidance is applied: if t < tau, then guidance is turned on for t < tau." | |
| " Lower tau values provide better reference preservation. We commonly use tau=0.6 and tau=0.8. <br />" | |
| "2. *Cross replace steps (crs)* and *self replace steps (srs)*. Controls the time step interval " | |
| "where the cross- and self-attention maps are replaced. Higher values lead to better preservation of the reference image. " | |
| "The optimal values depend on the particular image. " | |
| "Mostly, we use crs and srs from 0.2 to 0.6. <br />" | |
| "3. *Amplify word* and *Amplify factor*. Define the word that needs to be enhanced in the edited image. <br />" | |
| "4. *Blended word*. Specifies the object used for making local edits. That is, edit only selected objects. <br />" | |
| "5. *Is replacement*. You can set True, if you replace only one word in the original prompt. But False also works in these cases." | |
| ) | |
| gr.Markdown( | |
| "Feel free to check out our [image generation demo](https://huggingface.co/spaces/dbaranchuk/iCD-image-generation) as well." | |
| ) | |
| gr.Markdown( | |
| "If you enjoy the space, feel free to give a β to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)" | |
| ) | |
| with gr.Row(): | |
| input_prompt = gr.Text( | |
| label="Origial prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| prompt = gr.Text( | |
| label="Edited prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input image", height=512, width=512, show_label=False) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", height=512, width=512, show_label=False) | |
| with gr.Accordion("Advanced Settings", open=True): | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=1.0, | |
| maximum=20.0, | |
| step=1.0, | |
| value=20.0, | |
| ) | |
| tau = gr.Slider( | |
| label="Dynamic guidance tau", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.2, | |
| value=0.8, | |
| ) | |
| with gr.Row(): | |
| crs = gr.Slider( | |
| label="Cross replace steps", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.4 | |
| ) | |
| srs = gr.Slider( | |
| label="Self replace steps", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.4, | |
| ) | |
| with gr.Row(): | |
| amplify_word = gr.Text( | |
| label="Amplify word", | |
| max_lines=1, | |
| placeholder="Enter your word", | |
| ) | |
| amplify_factor = gr.Slider( | |
| label="Amplify factor", | |
| minimum=0.0, | |
| maximum=30, | |
| step=1.0, | |
| value=1, | |
| ) | |
| with gr.Row(): | |
| blend_orig = gr.Text( | |
| label="Blended word 1", | |
| max_lines=1, | |
| placeholder="Enter your word",) | |
| blend_edited = gr.Text( | |
| label="Blended word 2", | |
| max_lines=1, | |
| placeholder="Enter your word",) | |
| with gr.Row(): | |
| is_replacement = gr.Checkbox(label="Is replacement?", value=False) | |
| with gr.Row(): | |
| run_button = gr.Button("Edit", scale=0) | |
| with gr.Row(): | |
| examples = [ | |
| [ | |
| "examples/orig_3.jpg", #input_image | |
| "a photo of a basket of apples", #src_prompt | |
| "a photo of a basket of oranges", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.6, #tau | |
| 0.4, #crs | |
| 0.6, #srs | |
| 1, #amplify factor | |
| 'oranges', # amplify word | |
| '', #orig blend | |
| 'oranges', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_3.jpg", #input_image | |
| "a photo of a basket of apples", #src_prompt | |
| "a photo of a basket of puppies", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.6, #tau | |
| 0.4, #crs | |
| 0.1, #srs | |
| 2, #amplify factor | |
| 'puppies', # amplify word | |
| '', #orig blend | |
| 'puppies', #edited blend | |
| True #replacement | |
| ], | |
| [ | |
| "examples/orig_3.jpg", #input_image | |
| "a photo of a basket of apples", #src_prompt | |
| "a photo of a basket of apples under snowfall", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.6, #tau | |
| 0.4, #crs | |
| 0.4, #srs | |
| 30, #amplify factor | |
| 'snowfall', # amplify word | |
| '', #orig blend | |
| 'snowfall', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_1.jpg", #input_image | |
| "a photo of an owl", #src_prompt | |
| "a photo of an yellow owl", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.6, #tau | |
| 0.9, #crs | |
| 0.9, #srs | |
| 20, #amplify factor | |
| 'yellow', # amplify word | |
| 'owl', #orig blend | |
| 'yellow', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_1.jpg", #input_image | |
| "a photo of an owl", #src_prompt | |
| "an anime-style painting of an owl", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.8, #tau | |
| 0.6, #crs | |
| 0.3, #srs | |
| 10, #amplify factor | |
| 'anime-style', # amplify word | |
| 'painting', #orig blend | |
| 'anime-style', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_1.jpg", #input_image | |
| "a photo of an owl", #src_prompt | |
| "a photo of an owl underwater with many fishes nearby", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.8, #tau | |
| 0.4, #crs | |
| 0.4, #srs | |
| 18, #amplify factor | |
| 'fishes', # amplify word | |
| '', #orig blend | |
| 'fishes', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_2.jpg", #input_image | |
| "a photograph of a teddy bear sitting on a wall", #src_prompt | |
| "a photograph of a teddy bear sitting on a wall surrounded by roses", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.6, #tau | |
| 0.4, #crs | |
| 0.1, #srs | |
| 25, #amplify factor | |
| 'roses', # amplify word | |
| '', #orig blend | |
| 'roses', #edited blend | |
| False #replacement | |
| ], | |
| [ | |
| "examples/orig_2.jpg", #input_image | |
| "a photograph of a teddy bear sitting on a wall", #src_prompt | |
| "a photograph of a wooden bear sitting on a wall", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.8, #tau | |
| 0.5, #crs | |
| 0.5, #srs | |
| 14, #amplify factor | |
| 'wooden', # amplify word | |
| '', #orig blend | |
| 'wooden', #edited blend | |
| True #replacement | |
| ], | |
| [ | |
| "examples/orig_2.jpg", #input_image | |
| "a photograph of a teddy bear sitting on a wall", #src_prompt | |
| "a photograph of a teddy rabbit sitting on a wall", #tgt_prompt | |
| 20, #guidance_scale | |
| 0.8, #tau | |
| 0.4, #crs | |
| 0.4, #srs | |
| 3, #amplify factor | |
| 'rabbit', # amplify word | |
| '', #orig blend | |
| 'rabbit', #edited blend | |
| True #replacement | |
| ], | |
| ] | |
| gr.Examples( | |
| examples = examples, | |
| inputs =[input_image, input_prompt, prompt, | |
| guidance_scale, tau, crs, srs, amplify_factor, amplify_word, | |
| blend_orig, blend_edited, is_replacement], | |
| outputs=[ | |
| result | |
| ], | |
| fn=infer, cache_examples=True | |
| ) | |
| run_button.click( | |
| fn = infer, | |
| inputs=[input_image, input_prompt, prompt, | |
| guidance_scale, tau, crs, srs, amplify_factor, amplify_word, | |
| blend_orig, blend_edited, is_replacement], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch() | |