Spaces:
Runtime error
Runtime error
MorenoLQ
commited on
Commit
·
856bef6
1
Parent(s):
e6cb6ec
First commit
Browse files- README.md +10 -6
- app.py +110 -0
- gradio_queue.db +0 -0
- packages.txt +1 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,12 +1,16 @@
|
|
| 1 |
---
|
| 2 |
-
title: Robust
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
-
pinned:
|
| 9 |
license: mit
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Italian Robust ASR
|
| 3 |
+
emoji: 🎤
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
license: mit
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# Italian Robust ASR
|
| 13 |
+
|
| 14 |
+
Demo app for testing the model trained during the robust-speech-challenge by 🤗 HuggingFace
|
| 15 |
+
|
| 16 |
+
Forked by [jonatasgrosman/asr](https://huggingface.co/spaces/jonatasgrosman/asr)
|
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
| 5 |
+
|
| 6 |
+
logging.basicConfig(
|
| 7 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 8 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
| 9 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 10 |
+
)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
logger.setLevel(logging.DEBUG)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
DICT_MODELS = {
|
| 16 |
+
"robust-300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian-robust", "has_lm": True},
|
| 17 |
+
"robust-1b": {"model_id": "dbdmg/wav2vec2-xls-r-1b-italian-robust", "has_lm": True},
|
| 18 |
+
"300m": {"model_id": "dbdmg/wav2vec2-xls-r-300m-italian", "has_lm": True},
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# LANGUAGES = sorted(LARGE_MODEL_BY_LANGUAGE.keys())
|
| 23 |
+
|
| 24 |
+
# the container given by HF has 16GB of RAM, so we need to limit the number of models to load
|
| 25 |
+
MODELS = sorted(DICT_MODELS.keys())
|
| 26 |
+
CACHED_MODELS_BY_ID = {}
|
| 27 |
+
|
| 28 |
+
def run(input_file, model_name, decoding_type, history):
|
| 29 |
+
|
| 30 |
+
logger.info(f"Running ASR {model_name}-{decoding_type} for {input_file}")
|
| 31 |
+
|
| 32 |
+
history = history or []
|
| 33 |
+
|
| 34 |
+
model = DICT_MODELS.get(model_name)
|
| 35 |
+
|
| 36 |
+
if model is None:
|
| 37 |
+
history.append({
|
| 38 |
+
"error_message": f"Model size {model_size} not found for {language} language :("
|
| 39 |
+
})
|
| 40 |
+
elif decoding_type == "Guided by Language Model" and not model["has_lm"]:
|
| 41 |
+
history.append({
|
| 42 |
+
"error_message": f"LM not available for {language} language :("
|
| 43 |
+
})
|
| 44 |
+
else:
|
| 45 |
+
|
| 46 |
+
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
| 47 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
| 48 |
+
if model_instance is None:
|
| 49 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
| 50 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
| 51 |
+
|
| 52 |
+
if decoding_type == "Guided by Language Model":
|
| 53 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
| 54 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
| 55 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
| 56 |
+
else:
|
| 57 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
| 58 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
| 59 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
| 60 |
+
|
| 61 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
| 62 |
+
|
| 63 |
+
logger.info(f"Transcription for {input_file}: {transcription}")
|
| 64 |
+
|
| 65 |
+
history.append({
|
| 66 |
+
"model_id": model["model_id"],
|
| 67 |
+
"decoding_type": decoding_type,
|
| 68 |
+
"transcription": transcription,
|
| 69 |
+
"error_message": None
|
| 70 |
+
})
|
| 71 |
+
|
| 72 |
+
html_output = "<div class='result'>"
|
| 73 |
+
for item in history:
|
| 74 |
+
if item["error_message"] is not None:
|
| 75 |
+
html_output += f"<div class='result_item result_item_error'>{item['error_message']}</div>"
|
| 76 |
+
else:
|
| 77 |
+
url_suffix = " + Guided by Language Model" if item["decoding_type"] == "Guided by Language Model" else ""
|
| 78 |
+
html_output += "<div class='result_item result_item_success'>"
|
| 79 |
+
html_output += f'<strong><a target="_blank" href="https://huggingface.co/{item["model_id"]}">{item["model_id"]}{url_suffix}</a></strong><br/><br/>'
|
| 80 |
+
html_output += f'{item["transcription"]}<br/>'
|
| 81 |
+
html_output += "</div>"
|
| 82 |
+
html_output += "</div>"
|
| 83 |
+
|
| 84 |
+
return html_output, history
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
gr.Interface(
|
| 88 |
+
run,
|
| 89 |
+
inputs=[
|
| 90 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record something..."),
|
| 91 |
+
gr.inputs.Radio(label="Model", choices=MODELS),
|
| 92 |
+
gr.inputs.Radio(label="Decoding type", choices=["Standard", "Guided by Language Model"]),
|
| 93 |
+
"state"
|
| 94 |
+
],
|
| 95 |
+
outputs=[
|
| 96 |
+
gr.outputs.HTML(label="Outputs"),
|
| 97 |
+
"state"
|
| 98 |
+
],
|
| 99 |
+
title="Italian Robust ASR",
|
| 100 |
+
description="",
|
| 101 |
+
css="""
|
| 102 |
+
.result {display:flex;flex-direction:column}
|
| 103 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
| 104 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
| 105 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
| 106 |
+
""",
|
| 107 |
+
allow_screenshot=False,
|
| 108 |
+
allow_flagging="never",
|
| 109 |
+
theme="huggingface"
|
| 110 |
+
).launch(enable_queue=True)
|
gradio_queue.db
ADDED
|
File without changes
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
pyctcdecode
|
| 4 |
+
pypi-kenlm
|