Spaces:
Running
Running
app: rewrite in Gradio Blocks with multi-model support
Browse files
app.py
CHANGED
|
@@ -22,21 +22,40 @@ from detectron2.utils.visualizer import Visualizer
|
|
| 22 |
from detectron2.data import MetadataCatalog
|
| 23 |
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
cfg
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
if image_url:
|
| 41 |
r = requests.get(image_url)
|
| 42 |
if r:
|
|
@@ -46,29 +65,63 @@ def inference(image_url, image, min_score):
|
|
| 46 |
# Model expect BGR!
|
| 47 |
im = image[:,:,::-1]
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
outputs = predictor(im)
|
| 53 |
|
| 54 |
-
v = Visualizer(im,
|
| 55 |
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
| 56 |
|
| 57 |
return out.get_image()
|
| 58 |
|
| 59 |
|
| 60 |
-
title = "DBMDZ Detectron2 Model Demo"
|
| 61 |
-
description = "
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
from detectron2.data import MetadataCatalog
|
| 23 |
|
| 24 |
|
| 25 |
+
models = [
|
| 26 |
+
{
|
| 27 |
+
"name": "Version 1 (2-class)",
|
| 28 |
+
"model_path": "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth",
|
| 29 |
+
"classes": ["Illumination", "Illustration"],
|
| 30 |
+
"cfg": None,
|
| 31 |
+
"metadata": None
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"name": "Version 2 (4-class)",
|
| 35 |
+
"model_path": "https://huggingface.co/dbmdz/detectron2-v2-model/resolve/main/model_final.pth",
|
| 36 |
+
"classes": ["ILLUSTRATION", "OTHER", "STAMP", "INITIAL"],
|
| 37 |
+
"cfg": None,
|
| 38 |
+
"metadata": None
|
| 39 |
+
},
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
model_name_to_id = {model["name"] : id_ for id_, model in enumerate(models)}
|
| 43 |
+
|
| 44 |
+
for model in models:
|
| 45 |
+
|
| 46 |
+
model["cfg"] = get_cfg()
|
| 47 |
+
model["cfg"].merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml")
|
| 48 |
+
model["cfg"].MODEL.ROI_HEADS.NUM_CLASSES = len(model["classes"])
|
| 49 |
+
model["cfg"].MODEL.WEIGHTS = model["model_path"]
|
| 50 |
+
|
| 51 |
+
model["metadata"] = MetadataCatalog.get(model["name"])
|
| 52 |
+
model["metadata"].thing_classes = model["classes"]
|
| 53 |
+
|
| 54 |
+
if not torch.cuda.is_available():
|
| 55 |
+
model["cfg"].MODEL.DEVICE = "cpu"
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def inference(image_url, image, min_score, model_name):
|
| 59 |
if image_url:
|
| 60 |
r = requests.get(image_url)
|
| 61 |
if r:
|
|
|
|
| 65 |
# Model expect BGR!
|
| 66 |
im = image[:,:,::-1]
|
| 67 |
|
| 68 |
+
model_id = model_name_to_id[model_name]
|
| 69 |
+
|
| 70 |
+
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
| 71 |
+
predictor = DefaultPredictor(models[model_id]["cfg"])
|
| 72 |
|
| 73 |
outputs = predictor(im)
|
| 74 |
|
| 75 |
+
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
|
| 76 |
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
| 77 |
|
| 78 |
return out.get_image()
|
| 79 |
|
| 80 |
|
| 81 |
+
title = "# DBMDZ Detectron2 Model Demo"
|
| 82 |
+
description = """
|
| 83 |
+
This demo introduces an interactive playground for our trained Detectron2 model.
|
| 84 |
+
|
| 85 |
+
Currently, two models are supported that were trained on manually annotated segments from digitized books:
|
| 86 |
+
|
| 87 |
+
* [Version 1 (2-class)](https://huggingface.co/dbmdz/detectron2-model): This model can detect *Illustration* or *Illumination* segments on a given page.
|
| 88 |
+
* [Version 2 (4-class)](https://huggingface.co/dbmdz/detectron2-v2-model): This model is more powerful and can detect *Illustration*, *Stamp*, *Initial* or *Other* segments on a given page.
|
| 89 |
+
"""
|
| 90 |
+
footer = "Made in Munich with ❤️ and 🥨."
|
| 91 |
+
|
| 92 |
+
with gr.Blocks() as demo:
|
| 93 |
+
gr.Markdown(title)
|
| 94 |
+
gr.Markdown(description)
|
| 95 |
+
|
| 96 |
+
with gr.Tab("From URL"):
|
| 97 |
+
url_input = gr.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg")
|
| 98 |
+
|
| 99 |
+
with gr.Tab("From Image"):
|
| 100 |
+
image_input = gr.Image(type="numpy", label="Input Image")
|
| 101 |
+
|
| 102 |
+
min_score = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score")
|
| 103 |
+
|
| 104 |
+
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
| 105 |
+
|
| 106 |
+
output_image = gr.Image(type="pil", label="Output")
|
| 107 |
+
|
| 108 |
+
inference_button = gr.Button("Submit")
|
| 109 |
+
|
| 110 |
+
inference_button.click(fn=inference, inputs=[url_input, image_input, min_score, model_name], outputs=output_image)
|
| 111 |
+
|
| 112 |
+
gr.Markdown(footer)
|
| 113 |
+
|
| 114 |
+
demo.launch()
|
| 115 |
+
|
| 116 |
+
#gr.Interface(
|
| 117 |
+
# inference,
|
| 118 |
+
# [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
|
| 119 |
+
# gr.inputs.Image(type="numpy", label="Input Image"),
|
| 120 |
+
# gr.Slider(minimum=0.0, maximum=1.0, value=0.5, label="Minimum score"),
|
| 121 |
+
# gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model"),
|
| 122 |
+
# ],
|
| 123 |
+
# gr.outputs.Image(type="pil", label="Output"),
|
| 124 |
+
# title=title,
|
| 125 |
+
# description=description,
|
| 126 |
+
# article=article,
|
| 127 |
+
# examples=[]).launch()
|