Spaces:
Paused
Paused
Updated assessment notebook, added solutions
Browse files- notebooks/assesment.ipynb +314 -15
- notebooks/solutions.ipynb +308 -0
notebooks/assesment.ipynb
CHANGED
|
@@ -4,27 +4,326 @@
|
|
| 4 |
"cell_type": "markdown",
|
| 5 |
"metadata": {},
|
| 6 |
"source": [
|
| 7 |
-
"# PySpark Data Engineering Assessment\n",
|
| 8 |
"\n",
|
| 9 |
-
"
|
| 10 |
"\n",
|
| 11 |
-
"1.
|
| 12 |
-
"
|
| 13 |
-
"
|
|
|
|
|
|
|
| 14 |
"\n",
|
| 15 |
-
"
|
| 16 |
"\n",
|
| 17 |
-
"
|
| 18 |
-
" - Find the average Fare by Pclass\n",
|
| 19 |
-
" - Find survival rate by Sex and Pclass\n",
|
| 20 |
-
" - etc.\n",
|
| 21 |
"\n",
|
| 22 |
-
"
|
|
|
|
| 23 |
"\n",
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
]
|
| 29 |
}
|
| 30 |
],
|
|
|
|
| 4 |
"cell_type": "markdown",
|
| 5 |
"metadata": {},
|
| 6 |
"source": [
|
| 7 |
+
"# PySpark Data Engineering Assessment (Extended)\n",
|
| 8 |
"\n",
|
| 9 |
+
"Welcome! In this notebook, you'll practice:\n",
|
| 10 |
"\n",
|
| 11 |
+
"1. Reading the **Titanic CSV** in **Pandas** and **PySpark**.\n",
|
| 12 |
+
"2. **Splitting** a single dataset into two DataFrames and **merging** them back together in both Pandas and Spark.\n",
|
| 13 |
+
"3. Data cleaning and aggregations in Pandas and Spark.\n",
|
| 14 |
+
"4. Writing and reading **Parquet** files.\n",
|
| 15 |
+
"5. Creating a **PySpark UDF** that leverages a **lightweight transformer model** to compute embeddings for passenger names.\n",
|
| 16 |
"\n",
|
| 17 |
+
"---\n",
|
| 18 |
"\n",
|
| 19 |
+
"## Dataset\n",
|
|
|
|
|
|
|
|
|
|
| 20 |
"\n",
|
| 21 |
+
"- **`titanic.csv`**: This file is in the `../data/` directory, containing columns such as:\n",
|
| 22 |
+
" - `PassengerId`, `Name`, `Sex`, `Age`, `Fare`, `Survived`, etc.\n",
|
| 23 |
"\n",
|
| 24 |
+
"We will:\n",
|
| 25 |
+
"1. Read `titanic.csv` into Pandas and Spark.\n",
|
| 26 |
+
"2. Split the original DataFrame into two subsets (simulating two “tables”).\n",
|
| 27 |
+
"3. Demonstrate merges/joins in Pandas and Spark using these subsets.\n",
|
| 28 |
+
"4. Perform data cleaning and transformations.\n",
|
| 29 |
+
"5. Write to Parquet.\n",
|
| 30 |
+
"6. Implement a Spark UDF to generate embeddings for passenger names.\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"---\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"## Instructions\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"Throughout the notebook, you'll see `TODO` sections. Please fill in the required code. Feel free to add extra cells or explanations as needed.\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"When finished, please save or export this notebook and submit according to your instructions.\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"Let's begin!\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": null,
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"# 1. Imports and Spark Setup\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"import os\n",
|
| 52 |
+
"import pandas as pd\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"# PySpark imports\n",
|
| 55 |
+
"from pyspark.sql import SparkSession\n",
|
| 56 |
+
"from pyspark.sql import functions as F\n",
|
| 57 |
+
"from pyspark.sql.types import *\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"# Create/initialize Spark session\n",
|
| 60 |
+
"spark = SparkSession.builder \\\n",
|
| 61 |
+
" .appName(\"TitanicAssessmentExtended\") \\\n",
|
| 62 |
+
" .getOrCreate()\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"print(\"Spark version:\", spark.version)\n"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"# 2. Read the Titanic CSV (Pandas & Spark)\n",
|
| 74 |
+
"# ========================================\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"# Path to the CSV file\n",
|
| 77 |
+
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"# 2.1 TODO: Read 'titanic.csv' into a Pandas DataFrame (pd_df)\n",
|
| 80 |
+
"# pd_df = ?\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"# Inspect the shape and first few rows\n",
|
| 83 |
+
"# print(\"pd_df shape:\", pd_df.shape)\n",
|
| 84 |
+
"# display(pd_df.head())\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"# 2.2 TODO: Read 'titanic.csv' into a Spark DataFrame (spark_df)\n",
|
| 87 |
+
"# spark_df = ?\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"# Check schema and row count\n",
|
| 90 |
+
"# spark_df.printSchema()\n",
|
| 91 |
+
"# print(\"spark_df count:\", spark_df.count())\n"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"# 3. Split Data into Two Subsets for Merging/Joining\n",
|
| 101 |
+
"# ==================================================\n",
|
| 102 |
+
"# Instead of using a second CSV, we'll simulate it by splitting the original dataset\n",
|
| 103 |
+
"# into two DataFrames:\n",
|
| 104 |
+
"# df_part1: subset of columns -> PassengerId, Name, Sex, Age\n",
|
| 105 |
+
"# df_part2: subset of columns -> PassengerId, Fare, Survived, Pclass\n",
|
| 106 |
+
"#\n",
|
| 107 |
+
"# We then merge these two separate DataFrames in both Pandas and Spark.\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"# 3.1 Pandas Split\n",
|
| 110 |
+
"# ----------------\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"# TODO: Create two new DataFrames from pd_df:\n",
|
| 113 |
+
"# pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
|
| 114 |
+
"# pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"# pd_part1 = ?\n",
|
| 117 |
+
"# pd_part2 = ?\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"# display(pd_part1.head())\n",
|
| 120 |
+
"# display(pd_part2.head())\n"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": [
|
| 129 |
+
"# 3.2 Spark Split\n",
|
| 130 |
+
"# ---------------\n",
|
| 131 |
+
"# TODO: Create two new DataFrames from spark_df:\n",
|
| 132 |
+
"# spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
|
| 133 |
+
"# spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"# spark_part1 = ?\n",
|
| 136 |
+
"# spark_part2 = ?\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"# spark_part1.show(5)\n",
|
| 139 |
+
"# spark_part2.show(5)\n"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"# 4. Merging / Joining the Split DataFrames\n",
|
| 149 |
+
"# =========================================\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"# 4.1 Merge in Pandas\n",
|
| 152 |
+
"# -------------------\n",
|
| 153 |
+
"# TODO: Merge pd_part1 and pd_part2 on \"PassengerId\"\n",
|
| 154 |
+
"# We'll call the merged DataFrame \"pd_merged\".\n",
|
| 155 |
+
"#\n",
|
| 156 |
+
"# pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"# pd_merged = ?\n",
|
| 159 |
+
"# print(\"pd_merged shape:\", pd_merged.shape)\n",
|
| 160 |
+
"# display(pd_merged.head())\n"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "code",
|
| 165 |
+
"execution_count": null,
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"outputs": [],
|
| 168 |
+
"source": [
|
| 169 |
+
"# 4.2 Join in Spark\n",
|
| 170 |
+
"# -----------------\n",
|
| 171 |
+
"# TODO: Join spark_part1 with spark_part2 on \"PassengerId\"\n",
|
| 172 |
+
"# We'll call the joined DataFrame \"spark_merged\".\n",
|
| 173 |
+
"#\n",
|
| 174 |
+
"# spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
|
| 175 |
+
"\n",
|
| 176 |
+
"# spark_merged = ?\n",
|
| 177 |
+
"# print(\"spark_merged count:\", spark_merged.count())\n",
|
| 178 |
+
"# spark_merged.show(5)\n",
|
| 179 |
+
"# spark_merged.printSchema()\n"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"execution_count": null,
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"# 5. Data Cleaning\n",
|
| 189 |
+
"# ================\n",
|
| 190 |
+
"# We'll focus on the merged DataFrames. For instance, drop rows that have missing\n",
|
| 191 |
+
"# values in certain columns like 'Age' or 'Fare'.\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"# 5.1 TODO: Pandas DataFrame cleaning\n",
|
| 194 |
+
"# Create a cleaned version, 'pd_merged_clean',\n",
|
| 195 |
+
"# dropping nulls in [\"Age\", \"Fare\"].\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"# pd_merged_clean = ?\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"# print(\"Before dropna:\", pd_merged.shape)\n",
|
| 200 |
+
"# print(\"After dropna:\", pd_merged_clean.shape)\n",
|
| 201 |
+
"# pd_merged_clean.head()\n"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"cell_type": "code",
|
| 206 |
+
"execution_count": null,
|
| 207 |
+
"metadata": {},
|
| 208 |
+
"outputs": [],
|
| 209 |
+
"source": [
|
| 210 |
+
"# 5.2 TODO: Spark DataFrame cleaning\n",
|
| 211 |
+
"# Create a cleaned version, 'spark_merged_clean',\n",
|
| 212 |
+
"# dropping nulls in [\"Age\", \"Fare\"].\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"# spark_merged_clean = ?\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"# print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
|
| 217 |
+
"# print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
|
| 218 |
+
"# spark_merged_clean.show(5)\n"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"outputs": [],
|
| 226 |
+
"source": [
|
| 227 |
+
"# 6. Basic Aggregations\n",
|
| 228 |
+
"# =====================\n",
|
| 229 |
+
"# Let's do a couple of group-by queries to glean insights.\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"# 6.1 TODO: Pandas - Average fare by Pclass\n",
|
| 232 |
+
"# e.g. group by 'Pclass' and compute mean fare in pd_merged_clean\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"# pd_avg_fare = ?\n",
|
| 235 |
+
"# pd_avg_fare\n"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "code",
|
| 240 |
+
"execution_count": null,
|
| 241 |
+
"metadata": {},
|
| 242 |
+
"outputs": [],
|
| 243 |
+
"source": [
|
| 244 |
+
"# 6.2 TODO: Spark - Survival rate by Sex and Pclass\n",
|
| 245 |
+
"# e.g. groupBy(\"Sex\", \"Pclass\").agg(F.avg(\"Survived\"))\n",
|
| 246 |
+
"#\n",
|
| 247 |
+
"# spark_survival_rate = ?\n",
|
| 248 |
+
"# spark_survival_rate.show()\n"
|
| 249 |
+
]
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"cell_type": "code",
|
| 253 |
+
"execution_count": null,
|
| 254 |
+
"metadata": {},
|
| 255 |
+
"outputs": [],
|
| 256 |
+
"source": [
|
| 257 |
+
"# 7. Writing to Parquet\n",
|
| 258 |
+
"# =====================\n",
|
| 259 |
+
"# We'll write the cleaned Spark DataFrame to a Parquet file (e.g. \"titanic_merged_clean.parquet\").\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"# 7.1 TODO: Write spark_merged_clean to Parquet\n",
|
| 262 |
+
"# e.g., spark_merged_clean.write.mode(\"overwrite\").parquet(\"titanic_merged_clean.parquet\")\n",
|
| 263 |
+
"\n",
|
| 264 |
+
"# 7.2 TODO: Read it back into a new Spark DataFrame called 'spark_parquet_df'\n",
|
| 265 |
+
"# spark_parquet_df = ?\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"# print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
|
| 268 |
+
"# spark_parquet_df.show(5)\n"
|
| 269 |
+
]
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"cell_type": "code",
|
| 273 |
+
"execution_count": null,
|
| 274 |
+
"metadata": {},
|
| 275 |
+
"outputs": [],
|
| 276 |
+
"source": [
|
| 277 |
+
"# 8. Bonus 1: Create a Temp View and Query\n",
|
| 278 |
+
"# ========================================\n",
|
| 279 |
+
"# 8.1 TODO: Create a temp view with 'spark_merged_clean' (e.g. \"titanic_merged\")\n",
|
| 280 |
+
"# spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"# 8.2 TODO: Spark SQL query example\n",
|
| 283 |
+
"# result_df = spark.sql(\"SELECT ... FROM titanic_merged GROUP BY ...\")\n",
|
| 284 |
+
"# result_df.show()\n"
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"outputs": [],
|
| 292 |
+
"source": [
|
| 293 |
+
"# 9. Bonus 2: Transformer Embeddings UDF\n",
|
| 294 |
+
"# ======================================\n",
|
| 295 |
+
"# We'll demonstrate a simple approach using a lightweight transformer model to embed passenger names.\n",
|
| 296 |
+
"# This is optional, but shows advanced usage of Spark UDFs.\n",
|
| 297 |
+
"\n",
|
| 298 |
+
"# Requirements: e.g. \"transformers\" or \"sentence-transformers\" in your environment.\n",
|
| 299 |
+
"# from transformers import pipeline\n",
|
| 300 |
+
"# embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
| 301 |
+
"# OR\n",
|
| 302 |
+
"# from sentence_transformers import SentenceTransformer\n",
|
| 303 |
+
"# model = SentenceTransformer(\"all-MiniLM-L6-v2\")\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"# 9.1 TODO: import / load the model/pipeline\n",
|
| 306 |
+
"# e.g.\n",
|
| 307 |
+
"# from transformers import pipeline\n",
|
| 308 |
+
"# embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
| 309 |
+
"\n",
|
| 310 |
+
"# 9.2 Define a Python function that takes a passenger name (string) -> returns a list of floats\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"# def get_name_embedding(name: str) -> List[float]:\n",
|
| 313 |
+
"# # TODO: use embedding_pipeline or model to produce an embedding\n",
|
| 314 |
+
"# # embedding = ?\n",
|
| 315 |
+
"# # NOTE: verify shape (embedding might be list of lists)\n",
|
| 316 |
+
"# return ???\n",
|
| 317 |
+
"\n",
|
| 318 |
+
"# 9.3 Wrap that function in a PySpark UDF\n",
|
| 319 |
+
"# from pyspark.sql.functions import udf\n",
|
| 320 |
+
"# from pyspark.sql.types import ArrayType, FloatType\n",
|
| 321 |
+
"# udf_get_name_embedding = udf(get_name_embedding, ArrayType(FloatType()))\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"# 9.4 Apply the UDF to create a new column 'NameEmbedding' in spark_merged_clean\n",
|
| 324 |
+
"# spark_embedded = spark_merged_clean.withColumn(\"NameEmbedding\", udf_get_name_embedding(F.col(\"Name\")))\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"# spark_embedded.select(\"Name\", \"NameEmbedding\").show(truncate=False)\n"
|
| 327 |
]
|
| 328 |
}
|
| 329 |
],
|
notebooks/solutions.ipynb
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"## Solutions Guide"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": null,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import os\n",
|
| 17 |
+
"import pandas as pd\n",
|
| 18 |
+
"\n",
|
| 19 |
+
"# PySpark imports\n",
|
| 20 |
+
"from pyspark.sql import SparkSession\n",
|
| 21 |
+
"from pyspark.sql import functions as F\n",
|
| 22 |
+
"from pyspark.sql.types import *\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"# Create or get Spark session\n",
|
| 25 |
+
"spark = SparkSession.builder \\\n",
|
| 26 |
+
" .appName(\"TitanicAssessmentExtended\") \\\n",
|
| 27 |
+
" .getOrCreate()\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"print(\"Spark version:\", spark.version)\n"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "markdown",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"source": [
|
| 36 |
+
"Explanation:\n",
|
| 37 |
+
"\n",
|
| 38 |
+
" We import pandas, pyspark.sql modules, and create a Spark session named \"TitanicAssessmentExtended\".\n",
|
| 39 |
+
" Checking spark.version helps confirm which version of Spark is running."
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": null,
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"#Read in data \n",
|
| 49 |
+
"titanic_csv_path = os.path.join(\"..\", \"data\", \"titanic.csv\")\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"# 2.1 Read into a Pandas DataFrame\n",
|
| 52 |
+
"pd_df = pd.read_csv(titanic_csv_path)\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"print(\"pd_df shape:\", pd_df.shape)\n",
|
| 55 |
+
"display(pd_df.head())\n"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "markdown",
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"source": [
|
| 62 |
+
"We use pd.read_csv(...) to read the Titanic data into a pd.DataFrame.\n",
|
| 63 |
+
".shape gives the (rows, columns).\n",
|
| 64 |
+
".head() shows the top few rows."
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"# 2.2 Read into a Spark DataFrame\n",
|
| 74 |
+
"spark_df = spark.read.csv(titanic_csv_path, header=True, inferSchema=True)\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"spark_df.printSchema()\n",
|
| 77 |
+
"print(\"spark_df count:\", spark_df.count())\n",
|
| 78 |
+
"spark_df.show(5)\n"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "markdown",
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"source": [
|
| 85 |
+
"We specify header=True so Spark knows the first row is column headers, and inferSchema=True so it automatically detects column types.\n",
|
| 86 |
+
".printSchema() reveals the inferred schema.\n",
|
| 87 |
+
".count() and .show() let us see row counts and sample rows."
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"#Split data into subsets\n",
|
| 97 |
+
"\n",
|
| 98 |
+
"pd_part1 = pd_df[[\"PassengerId\", \"Name\", \"Sex\", \"Age\"]]\n",
|
| 99 |
+
"pd_part2 = pd_df[[\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\"]]\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"display(pd_part1.head())\n",
|
| 102 |
+
"display(pd_part2.head())\n"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": [
|
| 111 |
+
"spark_part1 = spark_df.select(\"PassengerId\", \"Name\", \"Sex\", \"Age\")\n",
|
| 112 |
+
"spark_part2 = spark_df.select(\"PassengerId\", \"Fare\", \"Survived\", \"Pclass\")\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"spark_part1.show(5)\n",
|
| 115 |
+
"spark_part2.show(5)\n"
|
| 116 |
+
]
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"cell_type": "code",
|
| 120 |
+
"execution_count": null,
|
| 121 |
+
"metadata": {},
|
| 122 |
+
"outputs": [],
|
| 123 |
+
"source": [
|
| 124 |
+
"#Merging/Joining split dataframes \n",
|
| 125 |
+
"\n",
|
| 126 |
+
"pd_merged = pd_part1.merge(pd_part2, on=\"PassengerId\", how=\"inner\")\n",
|
| 127 |
+
"print(\"pd_merged shape:\", pd_merged.shape)\n",
|
| 128 |
+
"display(pd_merged.head())\n"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "markdown",
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"source": [
|
| 135 |
+
"on=\"PassengerId\" merges the two tables by the PassengerId key.\n",
|
| 136 |
+
"how=\"inner\" ensures rows only appear if they exist in both subsets (should be all matching in this case)."
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "code",
|
| 141 |
+
"execution_count": null,
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [],
|
| 144 |
+
"source": [
|
| 145 |
+
"#Join in spark\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"spark_merged = spark_part1.join(spark_part2, on=\"PassengerId\", how=\"inner\")\n",
|
| 148 |
+
"print(\"spark_merged count:\", spark_merged.count())\n",
|
| 149 |
+
"spark_merged.show(5)\n",
|
| 150 |
+
"spark_merged.printSchema()\n"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "markdown",
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"source": [
|
| 157 |
+
"Spark uses .join(df2, on=\"PassengerId\", how=\"inner\").\n",
|
| 158 |
+
"spark_merged.show(5) and .printSchema() confirm the merge result."
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": null,
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [],
|
| 166 |
+
"source": [
|
| 167 |
+
"#Data cleaning\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"pd_merged_clean = pd_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
|
| 170 |
+
"print(\"Before dropna:\", pd_merged.shape)\n",
|
| 171 |
+
"print(\"After dropna:\", pd_merged_clean.shape)\n",
|
| 172 |
+
"pd_merged_clean.head()"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"cell_type": "code",
|
| 177 |
+
"execution_count": null,
|
| 178 |
+
"metadata": {},
|
| 179 |
+
"outputs": [],
|
| 180 |
+
"source": [
|
| 181 |
+
"#Spark data cleaning\n",
|
| 182 |
+
"spark_merged_clean = spark_merged.dropna(subset=[\"Age\", \"Fare\"])\n",
|
| 183 |
+
"print(\"spark_merged count BEFORE dropna:\", spark_merged.count())\n",
|
| 184 |
+
"print(\"spark_merged_clean count AFTER dropna:\", spark_merged_clean.count())\n",
|
| 185 |
+
"spark_merged_clean.show(5)\n"
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"cell_type": "code",
|
| 190 |
+
"execution_count": null,
|
| 191 |
+
"metadata": {},
|
| 192 |
+
"outputs": [],
|
| 193 |
+
"source": [
|
| 194 |
+
"#Basic aggregations\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"pd_avg_fare = pd_merged_clean.groupby(\"Pclass\")[\"Fare\"].mean()\n",
|
| 197 |
+
"pd_avg_fare"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": null,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"#Spark survival rate by sex and pclass\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"spark_survival_rate = (\n",
|
| 209 |
+
" spark_merged_clean\n",
|
| 210 |
+
" .groupBy(\"Sex\", \"Pclass\")\n",
|
| 211 |
+
" .agg(F.avg(\"Survived\").alias(\"survival_rate\"))\n",
|
| 212 |
+
")\n",
|
| 213 |
+
"spark_survival_rate.show()\n"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": null,
|
| 219 |
+
"metadata": {},
|
| 220 |
+
"outputs": [],
|
| 221 |
+
"source": [
|
| 222 |
+
"#Write spark df to parquet\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"spark_merged_clean.write.mode(\"overwrite\").parquet(\"titanic_merged_clean.parquet\")"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"execution_count": null,
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [],
|
| 232 |
+
"source": [
|
| 233 |
+
"#Read parquet back in\n",
|
| 234 |
+
"\n",
|
| 235 |
+
"spark_parquet_df = spark.read.parquet(\"titanic_merged_clean.parquet\")\n",
|
| 236 |
+
"print(\"spark_parquet_df count:\", spark_parquet_df.count())\n",
|
| 237 |
+
"spark_parquet_df.show(5)\n"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "code",
|
| 242 |
+
"execution_count": null,
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"outputs": [],
|
| 245 |
+
"source": [
|
| 246 |
+
"#Bonus - create a temp view/query\n",
|
| 247 |
+
"\n",
|
| 248 |
+
"spark_merged_clean.createOrReplaceTempView(\"titanic_merged\")\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"result_df = spark.sql(\n",
|
| 251 |
+
" \"\"\"\n",
|
| 252 |
+
" SELECT Pclass,\n",
|
| 253 |
+
" COUNT(*) AS passenger_count,\n",
|
| 254 |
+
" AVG(Age) AS avg_age\n",
|
| 255 |
+
" FROM titanic_merged\n",
|
| 256 |
+
" GROUP BY Pclass\n",
|
| 257 |
+
" ORDER BY Pclass\n",
|
| 258 |
+
" \"\"\")\n",
|
| 259 |
+
"result_df.show()\n"
|
| 260 |
+
]
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"cell_type": "code",
|
| 264 |
+
"execution_count": null,
|
| 265 |
+
"metadata": {},
|
| 266 |
+
"outputs": [],
|
| 267 |
+
"source": [
|
| 268 |
+
"# Example imports (make sure 'transformers' is installed)\n",
|
| 269 |
+
"from transformers import pipeline\n",
|
| 270 |
+
"embedding_pipeline = pipeline(\"feature-extraction\", model=\"distilbert-base-uncased\")\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"# Example function to get the name embedding\n",
|
| 273 |
+
"def get_name_embedding(name: str):\n",
|
| 274 |
+
" # The pipeline will return a list of lists of floats.\n",
|
| 275 |
+
" # Typically shape: (1, sequence_length, hidden_size).\n",
|
| 276 |
+
" # We'll take the first token or perhaps average them.\n",
|
| 277 |
+
" output = embedding_pipeline(name)\n",
|
| 278 |
+
" # output[0] is shape [sequence_length, hidden_size]\n",
|
| 279 |
+
" # let's do a simple average across the sequence dimension:\n",
|
| 280 |
+
" token_embeddings = output[0]\n",
|
| 281 |
+
" # average across tokens:\n",
|
| 282 |
+
" mean_embedding = [float(sum(x) / len(x)) for x in zip(*token_embeddings)]\n",
|
| 283 |
+
" return mean_embedding\n",
|
| 284 |
+
"\n",
|
| 285 |
+
"# Convert this Python function to a Spark UDF\n",
|
| 286 |
+
"from pyspark.sql.functions import udf\n",
|
| 287 |
+
"from pyspark.sql.types import ArrayType, FloatType\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"udf_get_name_embedding = udf(get_name_embedding, ArrayType(FloatType()))\n",
|
| 290 |
+
"\n",
|
| 291 |
+
"# Apply it to add a new column\n",
|
| 292 |
+
"spark_embedded = spark_merged_clean.withColumn(\n",
|
| 293 |
+
" \"NameEmbedding\",\n",
|
| 294 |
+
" udf_get_name_embedding(F.col(\"Name\"))\n",
|
| 295 |
+
")\n",
|
| 296 |
+
"\n",
|
| 297 |
+
"spark_embedded.select(\"Name\", \"NameEmbedding\").show(truncate=False)\n"
|
| 298 |
+
]
|
| 299 |
+
}
|
| 300 |
+
],
|
| 301 |
+
"metadata": {
|
| 302 |
+
"language_info": {
|
| 303 |
+
"name": "python"
|
| 304 |
+
}
|
| 305 |
+
},
|
| 306 |
+
"nbformat": 4,
|
| 307 |
+
"nbformat_minor": 2
|
| 308 |
+
}
|