Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import os | |
| import shutil | |
| from pathlib import Path | |
| import onnx | |
| import torch | |
| from packaging import version | |
| from torch.onnx import export | |
| from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline | |
| is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | |
| def onnx_export( | |
| model, | |
| model_args: tuple, | |
| output_path: Path, | |
| ordered_input_names, | |
| output_names, | |
| dynamic_axes, | |
| opset, | |
| use_external_data_format=False, | |
| ): | |
| output_path.parent.mkdir(parents=True, exist_ok=True) | |
| # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | |
| # so we check the torch version for backwards compatibility | |
| if is_torch_less_than_1_11: | |
| export( | |
| model, | |
| model_args, | |
| f=output_path.as_posix(), | |
| input_names=ordered_input_names, | |
| output_names=output_names, | |
| dynamic_axes=dynamic_axes, | |
| do_constant_folding=True, | |
| use_external_data_format=use_external_data_format, | |
| enable_onnx_checker=True, | |
| opset_version=opset, | |
| ) | |
| else: | |
| export( | |
| model, | |
| model_args, | |
| f=output_path.as_posix(), | |
| input_names=ordered_input_names, | |
| output_names=output_names, | |
| dynamic_axes=dynamic_axes, | |
| do_constant_folding=True, | |
| opset_version=opset, | |
| ) | |
| def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| if fp16 and torch.cuda.is_available(): | |
| device = "cuda" | |
| elif fp16 and not torch.cuda.is_available(): | |
| raise ValueError("`float16` model export is only supported on GPUs with CUDA") | |
| else: | |
| device = "cpu" | |
| pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) | |
| output_path = Path(output_path) | |
| # TEXT ENCODER | |
| num_tokens = pipeline.text_encoder.config.max_position_embeddings | |
| text_hidden_size = pipeline.text_encoder.config.hidden_size | |
| text_input = pipeline.tokenizer( | |
| "A sample prompt", | |
| padding="max_length", | |
| max_length=pipeline.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| onnx_export( | |
| pipeline.text_encoder, | |
| # casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files | |
| model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), | |
| output_path=output_path / "text_encoder" / "model.onnx", | |
| ordered_input_names=["input_ids"], | |
| output_names=["last_hidden_state", "pooler_output"], | |
| dynamic_axes={ | |
| "input_ids": {0: "batch", 1: "sequence"}, | |
| }, | |
| opset=opset, | |
| ) | |
| del pipeline.text_encoder | |
| # UNET | |
| unet_in_channels = pipeline.unet.config.in_channels | |
| unet_sample_size = pipeline.unet.config.sample_size | |
| unet_path = output_path / "unet" / "model.onnx" | |
| onnx_export( | |
| pipeline.unet, | |
| model_args=( | |
| torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
| torch.randn(2).to(device=device, dtype=dtype), | |
| torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), | |
| False, | |
| ), | |
| output_path=unet_path, | |
| ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], | |
| output_names=["out_sample"], # has to be different from "sample" for correct tracing | |
| dynamic_axes={ | |
| "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
| "timestep": {0: "batch"}, | |
| "encoder_hidden_states": {0: "batch", 1: "sequence"}, | |
| }, | |
| opset=opset, | |
| use_external_data_format=True, # UNet is > 2GB, so the weights need to be split | |
| ) | |
| unet_model_path = str(unet_path.absolute().as_posix()) | |
| unet_dir = os.path.dirname(unet_model_path) | |
| unet = onnx.load(unet_model_path) | |
| # clean up existing tensor files | |
| shutil.rmtree(unet_dir) | |
| os.mkdir(unet_dir) | |
| # collate external tensor files into one | |
| onnx.save_model( | |
| unet, | |
| unet_model_path, | |
| save_as_external_data=True, | |
| all_tensors_to_one_file=True, | |
| location="weights.pb", | |
| convert_attribute=False, | |
| ) | |
| del pipeline.unet | |
| # VAE ENCODER | |
| vae_encoder = pipeline.vae | |
| vae_in_channels = vae_encoder.config.in_channels | |
| vae_sample_size = vae_encoder.config.sample_size | |
| # need to get the raw tensor output (sample) from the encoder | |
| vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() | |
| onnx_export( | |
| vae_encoder, | |
| model_args=( | |
| torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), | |
| False, | |
| ), | |
| output_path=output_path / "vae_encoder" / "model.onnx", | |
| ordered_input_names=["sample", "return_dict"], | |
| output_names=["latent_sample"], | |
| dynamic_axes={ | |
| "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
| }, | |
| opset=opset, | |
| ) | |
| # VAE DECODER | |
| vae_decoder = pipeline.vae | |
| vae_latent_channels = vae_decoder.config.latent_channels | |
| vae_out_channels = vae_decoder.config.out_channels | |
| # forward only through the decoder part | |
| vae_decoder.forward = vae_encoder.decode | |
| onnx_export( | |
| vae_decoder, | |
| model_args=( | |
| torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), | |
| False, | |
| ), | |
| output_path=output_path / "vae_decoder" / "model.onnx", | |
| ordered_input_names=["latent_sample", "return_dict"], | |
| output_names=["sample"], | |
| dynamic_axes={ | |
| "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
| }, | |
| opset=opset, | |
| ) | |
| del pipeline.vae | |
| # SAFETY CHECKER | |
| if pipeline.safety_checker is not None: | |
| safety_checker = pipeline.safety_checker | |
| clip_num_channels = safety_checker.config.vision_config.num_channels | |
| clip_image_size = safety_checker.config.vision_config.image_size | |
| safety_checker.forward = safety_checker.forward_onnx | |
| onnx_export( | |
| pipeline.safety_checker, | |
| model_args=( | |
| torch.randn( | |
| 1, | |
| clip_num_channels, | |
| clip_image_size, | |
| clip_image_size, | |
| ).to(device=device, dtype=dtype), | |
| torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype), | |
| ), | |
| output_path=output_path / "safety_checker" / "model.onnx", | |
| ordered_input_names=["clip_input", "images"], | |
| output_names=["out_images", "has_nsfw_concepts"], | |
| dynamic_axes={ | |
| "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
| "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, | |
| }, | |
| opset=opset, | |
| ) | |
| del pipeline.safety_checker | |
| safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") | |
| feature_extractor = pipeline.feature_extractor | |
| else: | |
| safety_checker = None | |
| feature_extractor = None | |
| onnx_pipeline = OnnxStableDiffusionPipeline( | |
| vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), | |
| vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), | |
| text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), | |
| tokenizer=pipeline.tokenizer, | |
| unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), | |
| scheduler=pipeline.scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| requires_safety_checker=safety_checker is not None, | |
| ) | |
| onnx_pipeline.save_pretrained(output_path) | |
| print("ONNX pipeline saved to", output_path) | |
| del pipeline | |
| del onnx_pipeline | |
| _ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") | |
| print("ONNX pipeline is loadable") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| required=True, | |
| help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | |
| ) | |
| parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | |
| parser.add_argument( | |
| "--opset", | |
| default=14, | |
| type=int, | |
| help="The version of the ONNX operator set to use.", | |
| ) | |
| parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | |
| args = parser.parse_args() | |
| convert_models(args.model_path, args.output_path, args.opset, args.fp16) | |