Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| from pathlib import Path | |
| import torch | |
| from packaging import version | |
| from torch.onnx import export | |
| from diffusers import AutoencoderKL | |
| is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") | |
| def onnx_export( | |
| model, | |
| model_args: tuple, | |
| output_path: Path, | |
| ordered_input_names, | |
| output_names, | |
| dynamic_axes, | |
| opset, | |
| use_external_data_format=False, | |
| ): | |
| output_path.parent.mkdir(parents=True, exist_ok=True) | |
| # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, | |
| # so we check the torch version for backwards compatibility | |
| if is_torch_less_than_1_11: | |
| export( | |
| model, | |
| model_args, | |
| f=output_path.as_posix(), | |
| input_names=ordered_input_names, | |
| output_names=output_names, | |
| dynamic_axes=dynamic_axes, | |
| do_constant_folding=True, | |
| use_external_data_format=use_external_data_format, | |
| enable_onnx_checker=True, | |
| opset_version=opset, | |
| ) | |
| else: | |
| export( | |
| model, | |
| model_args, | |
| f=output_path.as_posix(), | |
| input_names=ordered_input_names, | |
| output_names=output_names, | |
| dynamic_axes=dynamic_axes, | |
| do_constant_folding=True, | |
| opset_version=opset, | |
| ) | |
| def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): | |
| dtype = torch.float16 if fp16 else torch.float32 | |
| if fp16 and torch.cuda.is_available(): | |
| device = "cuda" | |
| elif fp16 and not torch.cuda.is_available(): | |
| raise ValueError("`float16` model export is only supported on GPUs with CUDA") | |
| else: | |
| device = "cpu" | |
| output_path = Path(output_path) | |
| # VAE DECODER | |
| vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae") | |
| vae_latent_channels = vae_decoder.config.latent_channels | |
| # forward only through the decoder part | |
| vae_decoder.forward = vae_decoder.decode | |
| onnx_export( | |
| vae_decoder, | |
| model_args=( | |
| torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype), | |
| False, | |
| ), | |
| output_path=output_path / "vae_decoder" / "model.onnx", | |
| ordered_input_names=["latent_sample", "return_dict"], | |
| output_names=["sample"], | |
| dynamic_axes={ | |
| "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, | |
| }, | |
| opset=opset, | |
| ) | |
| del vae_decoder | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| required=True, | |
| help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", | |
| ) | |
| parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") | |
| parser.add_argument( | |
| "--opset", | |
| default=14, | |
| type=int, | |
| help="The version of the ONNX operator set to use.", | |
| ) | |
| parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") | |
| args = parser.parse_args() | |
| print(args.output_path) | |
| convert_models(args.model_path, args.output_path, args.opset, args.fp16) | |
| print("SD: Done: ONNX") | |