Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer | |
| from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel | |
| from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( | |
| RobertaSeriesConfig, | |
| RobertaSeriesModelWithTransformation, | |
| ) | |
| from diffusers.utils import slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu | |
| from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ...test_pipelines_common import PipelineTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = AltDiffusionPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| # TODO: address the non-deterministic text encoder (fails for save-load tests) | |
| # torch.manual_seed(0) | |
| # text_encoder_config = RobertaSeriesConfig( | |
| # hidden_size=32, | |
| # project_dim=32, | |
| # intermediate_size=37, | |
| # layer_norm_eps=1e-05, | |
| # num_attention_heads=4, | |
| # num_hidden_layers=5, | |
| # vocab_size=5002, | |
| # ) | |
| # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| projection_dim=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=5002, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta") | |
| tokenizer.model_max_length = 77 | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "numpy", | |
| } | |
| return inputs | |
| def test_alt_diffusion_ddim(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| torch.manual_seed(0) | |
| text_encoder_config = RobertaSeriesConfig( | |
| hidden_size=32, | |
| project_dim=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| vocab_size=5002, | |
| ) | |
| # TODO: remove after fixing the non-deterministic text encoder | |
| text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
| components["text_encoder"] = text_encoder | |
| alt_pipe = AltDiffusionPipeline(**components) | |
| alt_pipe = alt_pipe.to(device) | |
| alt_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["prompt"] = "A photo of an astronaut" | |
| output = alt_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_alt_diffusion_pndm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
| torch.manual_seed(0) | |
| text_encoder_config = RobertaSeriesConfig( | |
| hidden_size=32, | |
| project_dim=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| vocab_size=5002, | |
| ) | |
| # TODO: remove after fixing the non-deterministic text encoder | |
| text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) | |
| components["text_encoder"] = text_encoder | |
| alt_pipe = AltDiffusionPipeline(**components) | |
| alt_pipe = alt_pipe.to(device) | |
| alt_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = alt_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| class AltDiffusionPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_alt_diffusion(self): | |
| # make sure here that pndm scheduler skips prk | |
| alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None) | |
| alt_pipe = alt_pipe.to(torch_device) | |
| alt_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A painting of a squirrel eating a burger" | |
| generator = torch.manual_seed(0) | |
| output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np") | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_alt_diffusion_fast_ddim(self): | |
| scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler") | |
| alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None) | |
| alt_pipe = alt_pipe.to(torch_device) | |
| alt_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A painting of a squirrel eating a burger" | |
| generator = torch.manual_seed(0) | |
| output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy") | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |