Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel | |
| from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline | |
| from diffusers.utils import floats_tensor, nightly, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class SafeDiffusionPipelineFastTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def dummy_image(self): | |
| batch_size = 1 | |
| num_channels = 3 | |
| sizes = (32, 32) | |
| image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) | |
| return image | |
| def dummy_cond_unet(self): | |
| torch.manual_seed(0) | |
| model = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| return model | |
| def dummy_vae(self): | |
| torch.manual_seed(0) | |
| model = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| return model | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModel(config) | |
| def dummy_extractor(self): | |
| def extract(*args, **kwargs): | |
| class Out: | |
| def __init__(self): | |
| self.pixel_values = torch.ones([0]) | |
| def to(self, device): | |
| self.pixel_values.to(device) | |
| return self | |
| return Out() | |
| return extract | |
| def test_semantic_diffusion_ddim(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| unet = self.dummy_cond_unet | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| vae = self.dummy_vae | |
| bert = self.dummy_text_encoder | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| # make sure here that pndm scheduler skips prk | |
| sd_pipe = StableDiffusionPipeline( | |
| unet=unet, | |
| scheduler=scheduler, | |
| vae=vae, | |
| text_encoder=bert, | |
| tokenizer=tokenizer, | |
| safety_checker=None, | |
| feature_extractor=self.dummy_extractor, | |
| ) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A painting of a squirrel eating a burger" | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | |
| image = output.images | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image_from_tuple = sd_pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=6.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5644, 0.6018, 0.4799, 0.5267, 0.5585, 0.4641, 0.516, 0.4964, 0.4792]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_semantic_diffusion_pndm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| unet = self.dummy_cond_unet | |
| scheduler = PNDMScheduler(skip_prk_steps=True) | |
| vae = self.dummy_vae | |
| bert = self.dummy_text_encoder | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| # make sure here that pndm scheduler skips prk | |
| sd_pipe = StableDiffusionPipeline( | |
| unet=unet, | |
| scheduler=scheduler, | |
| vae=vae, | |
| text_encoder=bert, | |
| tokenizer=tokenizer, | |
| safety_checker=None, | |
| feature_extractor=self.dummy_extractor, | |
| ) | |
| sd_pipe = sd_pipe.to(device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A painting of a squirrel eating a burger" | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") | |
| image = output.images | |
| generator = torch.Generator(device=device).manual_seed(0) | |
| image_from_tuple = sd_pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=6.0, | |
| num_inference_steps=2, | |
| output_type="np", | |
| return_dict=False, | |
| )[0] | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_semantic_diffusion_no_safety_checker(self): | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None | |
| ) | |
| assert isinstance(pipe, StableDiffusionPipeline) | |
| assert isinstance(pipe.scheduler, LMSDiscreteScheduler) | |
| assert pipe.safety_checker is None | |
| image = pipe("example prompt", num_inference_steps=2).images[0] | |
| assert image is not None | |
| # check that there's no error when saving a pipeline with one of the models being None | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pipe.save_pretrained(tmpdirname) | |
| pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) | |
| # sanity check that the pipeline still works | |
| assert pipe.safety_checker is None | |
| image = pipe("example prompt", num_inference_steps=2).images[0] | |
| assert image is not None | |
| def test_semantic_diffusion_fp16(self): | |
| """Test that stable diffusion works with fp16""" | |
| unet = self.dummy_cond_unet | |
| scheduler = PNDMScheduler(skip_prk_steps=True) | |
| vae = self.dummy_vae | |
| bert = self.dummy_text_encoder | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| # put models in fp16 | |
| unet = unet.half() | |
| vae = vae.half() | |
| bert = bert.half() | |
| # make sure here that pndm scheduler skips prk | |
| sd_pipe = StableDiffusionPipeline( | |
| unet=unet, | |
| scheduler=scheduler, | |
| vae=vae, | |
| text_encoder=bert, | |
| tokenizer=tokenizer, | |
| safety_checker=None, | |
| feature_extractor=self.dummy_extractor, | |
| ) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A painting of a squirrel eating a burger" | |
| image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images | |
| assert image.shape == (1, 64, 64, 3) | |
| class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_positive_guidance(self): | |
| torch_device = "cuda" | |
| pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "a photo of a cat" | |
| edit = { | |
| "editing_prompt": ["sunglasses"], | |
| "reverse_editing_direction": [False], | |
| "edit_warmup_steps": 10, | |
| "edit_guidance_scale": 6, | |
| "edit_threshold": 0.95, | |
| "edit_momentum_scale": 0.5, | |
| "edit_mom_beta": 0.6, | |
| } | |
| seed = 3 | |
| guidance_scale = 7 | |
| # no sega enabled | |
| generator = torch.Generator(torch_device) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.34673113, | |
| 0.38492733, | |
| 0.37597352, | |
| 0.34086335, | |
| 0.35650748, | |
| 0.35579205, | |
| 0.3384763, | |
| 0.34340236, | |
| 0.3573271, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| # with sega enabled | |
| # generator = torch.manual_seed(seed) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| **edit, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.41887826, | |
| 0.37728766, | |
| 0.30138272, | |
| 0.41416335, | |
| 0.41664985, | |
| 0.36283392, | |
| 0.36191246, | |
| 0.43364465, | |
| 0.43001732, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_negative_guidance(self): | |
| torch_device = "cuda" | |
| pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "an image of a crowded boulevard, realistic, 4k" | |
| edit = { | |
| "editing_prompt": "crowd, crowded, people", | |
| "reverse_editing_direction": True, | |
| "edit_warmup_steps": 10, | |
| "edit_guidance_scale": 8.3, | |
| "edit_threshold": 0.9, | |
| "edit_momentum_scale": 0.5, | |
| "edit_mom_beta": 0.6, | |
| } | |
| seed = 9 | |
| guidance_scale = 7 | |
| # no sega enabled | |
| generator = torch.Generator(torch_device) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.43497998, | |
| 0.91814065, | |
| 0.7540739, | |
| 0.55580205, | |
| 0.8467265, | |
| 0.5389691, | |
| 0.62574506, | |
| 0.58897763, | |
| 0.50926757, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| # with sega enabled | |
| # generator = torch.manual_seed(seed) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| **edit, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.3089719, | |
| 0.30500144, | |
| 0.29016042, | |
| 0.30630964, | |
| 0.325687, | |
| 0.29419225, | |
| 0.2908091, | |
| 0.28723598, | |
| 0.27696294, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_multi_cond_guidance(self): | |
| torch_device = "cuda" | |
| pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "a castle next to a river" | |
| edit = { | |
| "editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"], | |
| "reverse_editing_direction": False, | |
| "edit_warmup_steps": [15, 18], | |
| "edit_guidance_scale": 6, | |
| "edit_threshold": [0.9, 0.8], | |
| "edit_momentum_scale": 0.5, | |
| "edit_mom_beta": 0.6, | |
| } | |
| seed = 48 | |
| guidance_scale = 7 | |
| # no sega enabled | |
| generator = torch.Generator(torch_device) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.75163555, | |
| 0.76037145, | |
| 0.61785, | |
| 0.9189673, | |
| 0.8627701, | |
| 0.85189694, | |
| 0.8512813, | |
| 0.87012076, | |
| 0.8312857, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| # with sega enabled | |
| # generator = torch.manual_seed(seed) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| **edit, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.73553365, | |
| 0.7537271, | |
| 0.74341905, | |
| 0.66480356, | |
| 0.6472925, | |
| 0.63039416, | |
| 0.64812905, | |
| 0.6749717, | |
| 0.6517102, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_guidance_fp16(self): | |
| torch_device = "cuda" | |
| pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "a photo of a cat" | |
| edit = { | |
| "editing_prompt": ["sunglasses"], | |
| "reverse_editing_direction": [False], | |
| "edit_warmup_steps": 10, | |
| "edit_guidance_scale": 6, | |
| "edit_threshold": 0.95, | |
| "edit_momentum_scale": 0.5, | |
| "edit_mom_beta": 0.6, | |
| } | |
| seed = 3 | |
| guidance_scale = 7 | |
| # no sega enabled | |
| generator = torch.Generator(torch_device) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.34887695, | |
| 0.3876953, | |
| 0.375, | |
| 0.34423828, | |
| 0.3581543, | |
| 0.35717773, | |
| 0.3383789, | |
| 0.34570312, | |
| 0.359375, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| # with sega enabled | |
| # generator = torch.manual_seed(seed) | |
| generator.manual_seed(seed) | |
| output = pipe( | |
| [prompt], | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=50, | |
| output_type="np", | |
| width=512, | |
| height=512, | |
| **edit, | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = [ | |
| 0.42285156, | |
| 0.36914062, | |
| 0.29077148, | |
| 0.42041016, | |
| 0.41918945, | |
| 0.35498047, | |
| 0.3618164, | |
| 0.4423828, | |
| 0.43115234, | |
| ] | |
| assert image.shape == (1, 512, 512, 3) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |