Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| StableDiffusionSAGPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils import slow, torch_device | |
| from diffusers.utils.testing_utils import require_torch_gpu | |
| from ...pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ...test_pipelines_common import PipelineTesterMixin | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class StableDiffusionSAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = StableDiffusionSAGPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| test_cpu_offload = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": ".", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 1.0, | |
| "sag_scale": 1.0, | |
| "output_type": "numpy", | |
| } | |
| return inputs | |
| class StableDiffusionPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_stable_diffusion_1(self): | |
| sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") | |
| sag_pipe = sag_pipe.to(torch_device) | |
| sag_pipe.set_progress_bar_config(disable=None) | |
| prompt = "." | |
| generator = torch.manual_seed(0) | |
| output = sag_pipe( | |
| [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 | |
| def test_stable_diffusion_2(self): | |
| sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") | |
| sag_pipe = sag_pipe.to(torch_device) | |
| sag_pipe.set_progress_bar_config(disable=None) | |
| prompt = "." | |
| generator = torch.manual_seed(0) | |
| output = sag_pipe( | |
| [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np" | |
| ) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 | |
| def test_stable_diffusion_2_non_square(self): | |
| sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") | |
| sag_pipe = sag_pipe.to(torch_device) | |
| sag_pipe.set_progress_bar_config(disable=None) | |
| prompt = "." | |
| generator = torch.manual_seed(0) | |
| output = sag_pipe( | |
| [prompt], | |
| width=768, | |
| height=512, | |
| generator=generator, | |
| guidance_scale=7.5, | |
| sag_scale=1.0, | |
| num_inference_steps=20, | |
| output_type="np", | |
| ) | |
| image = output.images | |
| assert image.shape == (1, 512, 768, 3) | |