deepsodha's picture
Update retailgpt_evaluator/app.py
4094d81 verified
import streamlit as st
from shared.hf_helpers import build_pipeline
from retailgpt_evaluator.leaderboard import build_leaderboard
import yaml, pandas as pd, os
from pathlib import Path
def main():
# Safely set page config (won’t error inside streamlit_hub.py)
try:
st.set_page_config(page_title="RetailGPT Evaluator", page_icon="πŸ›οΈ", layout="wide")
except st.errors.StreamlitAPIException:
pass
st.title("πŸ›οΈ RetailGPT Evaluator β€” AxionX Digital")
# Load config safely
config_path = Path(__file__).resolve().parent / "config.yaml"
with open(config_path) as f:
cfg = yaml.safe_load(f)
# Show leaderboard if exists
if os.path.exists("models/retail_eval_results.json"):
df = build_leaderboard()
st.subheader("πŸ“Š Model Leaderboard")
st.dataframe(df, use_container_width=True)
else:
st.warning("Run `evaluate.py` first to generate metrics.")
# Model chat interface
st.markdown("---")
model_name = st.selectbox("Choose a model to chat with:", cfg["models"])
pipe = build_pipeline(model_name)
query = st.text_area("Customer query:", "Which is the best country for retail?.")
if st.button("Ask Model"):
result = pipe(query, max_new_tokens=cfg["demo"]["max_new_tokens"])
st.markdown("### 🧠 Model Response")
st.write(result[0]["generated_text"])
# Ensure it's import-safe
if __name__ == "__main__":
main()