Spaces:
Running
Running
Update retailgpt_evaluator/app.py
Browse files- retailgpt_evaluator/app.py +33 -48
retailgpt_evaluator/app.py
CHANGED
|
@@ -2,56 +2,41 @@ import streamlit as st
|
|
| 2 |
from shared.hf_helpers import build_pipeline
|
| 3 |
from retailgpt_evaluator.leaderboard import build_leaderboard
|
| 4 |
import yaml, pandas as pd, os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
st.
|
| 9 |
-
|
| 10 |
-
pass # Already configured by main Streamlit Hub
|
| 11 |
-
|
| 12 |
-
# -------------------------------
|
| 13 |
-
# Title & Description
|
| 14 |
-
# -------------------------------
|
| 15 |
-
st.title("ποΈ RetailGPT Evaluator β AxionX Digital")
|
| 16 |
-
st.write("Benchmark and chat with multiple retail QA models.")
|
| 17 |
-
|
| 18 |
-
# -------------------------------
|
| 19 |
-
# Load Configuration
|
| 20 |
-
# -------------------------------
|
| 21 |
-
with open("retailgpt_evaluator/config.yaml") as f:
|
| 22 |
-
cfg = yaml.safe_load(f)
|
| 23 |
-
|
| 24 |
-
# -------------------------------
|
| 25 |
-
# Leaderboard Section
|
| 26 |
-
# -------------------------------
|
| 27 |
-
if os.path.exists("models/retail_eval_results.json"):
|
| 28 |
-
df = build_leaderboard()
|
| 29 |
-
st.subheader("π Model Leaderboard")
|
| 30 |
-
st.dataframe(df, use_container_width=True)
|
| 31 |
-
else:
|
| 32 |
-
st.warning("Run `evaluate.py` first to generate metrics.")
|
| 33 |
-
|
| 34 |
-
# -------------------------------
|
| 35 |
-
# Chat Interface
|
| 36 |
-
# -------------------------------
|
| 37 |
-
st.markdown("---")
|
| 38 |
-
st.subheader("π¬ Chat With a Model")
|
| 39 |
-
|
| 40 |
-
model_name = st.selectbox("Choose a model to chat with:", cfg["models"])
|
| 41 |
-
pipe = build_pipeline(model_name)
|
| 42 |
|
| 43 |
-
query = st.text_area("Customer query:", "I want to return a damaged product.")
|
| 44 |
-
if st.button("Ask Model"):
|
| 45 |
-
|
| 46 |
-
with st.spinner("Generating response..."):
|
| 47 |
-
result = pipe(query, max_new_tokens=cfg["demo"]["max_new_tokens"])
|
| 48 |
st.markdown("### π§ Model Response")
|
| 49 |
st.write(result[0]["generated_text"])
|
| 50 |
-
else:
|
| 51 |
-
st.warning("Please enter a customer query above before submitting.")
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
st.markdown("---")
|
| 57 |
-
st.caption("Β© 2025 AxionX Digital β Innovating Tomorrow")
|
|
|
|
| 2 |
from shared.hf_helpers import build_pipeline
|
| 3 |
from retailgpt_evaluator.leaderboard import build_leaderboard
|
| 4 |
import yaml, pandas as pd, os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
def main():
|
| 8 |
+
# Safely set page config (wonβt error inside streamlit_hub.py)
|
| 9 |
+
try:
|
| 10 |
+
st.set_page_config(page_title="RetailGPT Evaluator", page_icon="ποΈ", layout="wide")
|
| 11 |
+
except st.errors.StreamlitAPIException:
|
| 12 |
+
pass
|
| 13 |
+
|
| 14 |
+
st.title("ποΈ RetailGPT Evaluator β AxionX Digital")
|
| 15 |
+
|
| 16 |
+
# Load config safely
|
| 17 |
+
config_path = Path(__file__).resolve().parent / "config.yaml"
|
| 18 |
+
with open(config_path) as f:
|
| 19 |
+
cfg = yaml.safe_load(f)
|
| 20 |
+
|
| 21 |
+
# Show leaderboard if exists
|
| 22 |
+
if os.path.exists("models/retail_eval_results.json"):
|
| 23 |
+
df = build_leaderboard()
|
| 24 |
+
st.subheader("π Model Leaderboard")
|
| 25 |
+
st.dataframe(df, use_container_width=True)
|
| 26 |
+
else:
|
| 27 |
+
st.warning("Run `evaluate.py` first to generate metrics.")
|
| 28 |
|
| 29 |
+
# Model chat interface
|
| 30 |
+
st.markdown("---")
|
| 31 |
+
model_name = st.selectbox("Choose a model to chat with:", cfg["models"])
|
| 32 |
+
pipe = build_pipeline(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
query = st.text_area("Customer query:", "I want to return a damaged product.")
|
| 35 |
+
if st.button("Ask Model"):
|
| 36 |
+
result = pipe(query, max_new_tokens=cfg["demo"]["max_new_tokens"])
|
|
|
|
|
|
|
| 37 |
st.markdown("### π§ Model Response")
|
| 38 |
st.write(result[0]["generated_text"])
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Ensure it's import-safe
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
main()
|
|
|
|
|
|