Spaces:
Runtime error
Runtime error
File size: 45,861 Bytes
c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 c146001 9e4d2e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
import gradio as gr
import numpy as np
import random
from PIL import Image
import torch
import cv2
from diffusers import (
FluxPipeline,
AutoPipelineForImage2Image,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
DDIMScheduler,
)
from diffusers.models import AutoencoderKL
from transformers import CLIPVisionModelWithProjection
from controlnet_aux import (
CannyDetector,
OpenposeDetector,
MidasDetector,
LineartDetector,
HEDdetector,
)
from insightface.app import FaceAnalysis
import basicsr
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from gfpgan import GFPGANer
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print("🚀 Inicializando IA Studio Ultimate...")
# ===== MODELOS BASE =====
MODELS = {
"FLUX.1-dev (Melhor)": "black-forest-labs/FLUX.1-dev",
"FLUX.1-schnell (Rápido)": "black-forest-labs/FLUX.1-schnell",
"SDXL-Base": "stabilityai/stable-diffusion-xl-base-1.0",
"SDXL-Turbo (Ultra Rápido)": "stabilityai/sdxl-turbo",
"RealVisXL (Hiper-Realista)": "SG161222/RealVisXL_V4.0",
"DreamShaper XL": "Lykon/dreamshaper-xl-1-0",
"Juggernaut XL": "RunDiffusion/Juggernaut-XL-v9",
}
# ===== CONTROLNET MODELS =====
CONTROLNET_MODELS = {
"Canny (Contornos)": "diffusers/controlnet-canny-sdxl-1.0",
"Depth (Profundidade)": "diffusers/controlnet-depth-sdxl-1.0",
"OpenPose (Pose)": "thibaud/controlnet-openpose-sdxl-1.0",
"Lineart (Desenho)": "controlnet-lineart-sdxl-1.0",
"Soft Edge (Bordas)": "SargeZT/controlnet-sd-xl-1.0-softedge-dexined",
"Tile (Upscale)": "xinsir/controlnet-tile-sdxl-1.0",
}
# Cache global
model_cache = {}
controlnet_cache = {}
preprocessor_cache = {}
ip_adapter_cache = {}
face_analyzer = None
upscaler = None
face_enhancer = None
def init_face_analyzer():
"""Inicializa FaceAnalysis para IP-Adapter Face"""
global face_analyzer
if face_analyzer is None:
try:
face_analyzer = FaceAnalysis(name='buffalo_l', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
face_analyzer.prepare(ctx_id=0, det_size=(640, 640))
print("✓ Face Analyzer carregado")
except Exception as e:
print(f"⚠️ Face Analyzer não disponível: {e}")
return face_analyzer
def init_upscaler():
"""Inicializa RealESRGAN para upscaling"""
global upscaler
if upscaler is None:
try:
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
upscaler = RealESRGANer(
scale=4,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth',
model=model,
tile=512,
tile_pad=10,
pre_pad=0,
half=True if torch.cuda.is_available() else False
)
print("✓ RealESRGAN carregado")
except Exception as e:
print(f"⚠️ Upscaler não disponível: {e}")
return upscaler
def init_face_enhancer():
"""Inicializa GFPGAN para correção de rostos"""
global face_enhancer
if face_enhancer is None:
try:
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=init_upscaler()
)
print("✓ GFPGAN carregado")
except Exception as e:
print(f"⚠️ Face Enhancer não disponível: {e}")
return face_enhancer
def get_preprocessor(control_type):
"""Carrega preprocessadores ControlNet"""
if control_type in preprocessor_cache:
return preprocessor_cache[control_type]
try:
if control_type == "Canny (Contornos)":
preprocessor = CannyDetector()
elif control_type == "Depth (Profundidade)":
preprocessor = MidasDetector.from_pretrained("lllyasviel/Annotators")
elif control_type == "OpenPose (Pose)":
preprocessor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
elif control_type == "Lineart (Desenho)":
preprocessor = LineartDetector.from_pretrained("lllyasviel/Annotators")
elif control_type == "Soft Edge (Bordas)":
preprocessor = HEDdetector.from_pretrained("lllyasviel/Annotators")
else:
return None
preprocessor_cache[control_type] = preprocessor
return preprocessor
except Exception as e:
print(f"⚠️ Erro ao carregar preprocessor: {e}")
return None
def preprocess_controlnet_image(image, control_type, canny_low=100, canny_high=200):
"""Processa imagem para ControlNet"""
if control_type == "Nenhum" or image is None:
return None
preprocessor = get_preprocessor(control_type)
if not preprocessor:
return None
try:
if control_type == "Canny (Contornos)":
control_image = preprocessor(image, low_threshold=canny_low, high_threshold=canny_high)
else:
control_image = preprocessor(image)
return control_image
except Exception as e:
print(f"⚠️ Erro no preprocessamento: {e}")
return None
def load_ip_adapter(pipe, adapter_type="plus"):
"""Carrega IP-Adapter para condicionamento por imagem"""
try:
if adapter_type == "plus":
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
elif adapter_type == "plus-face":
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
pipe.set_ip_adapter_scale(0.6)
print(f"✓ IP-Adapter {adapter_type} carregado")
return True
except Exception as e:
print(f"⚠️ IP-Adapter não disponível: {e}")
return False
def load_model(model_name, use_controlnet=False, controlnet_type="Nenhum", use_ip_adapter=False, ip_adapter_type="plus"):
"""Carrega modelo com todos os componentes"""
cache_key = f"{model_name}_{controlnet_type}_{ip_adapter_type if use_ip_adapter else 'no-ip'}"
if cache_key in model_cache:
print(f"✓ Cache hit: {cache_key}")
return model_cache[cache_key]
print(f"⏳ Carregando: {cache_key}")
model_id = MODELS[model_name]
try:
# VAE melhorado para SDXL
vae = None
if "FLUX" not in model_name:
try:
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch_dtype
).to(device)
print("✓ VAE otimizado carregado")
except:
pass
# FLUX (sem ControlNet/IP-Adapter ainda)
if "FLUX" in model_name:
pipe_txt2img = FluxPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
).to(device)
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
model_id,
torch_dtype=torch_dtype,
).to(device)
pipe_controlnet = None
pipe_inpaint = None
# SDXL com todos os recursos
else:
from diffusers import StableDiffusionXLPipeline
base_args = {
"torch_dtype": torch_dtype,
"variant": "fp16",
"use_safetensors": True,
}
if vae:
base_args["vae"] = vae
# ControlNet Pipeline
if use_controlnet and controlnet_type != "Nenhum":
try:
controlnet_id = CONTROLNET_MODELS[controlnet_type]
controlnet = ControlNetModel.from_pretrained(
controlnet_id,
torch_dtype=torch_dtype,
).to(device)
pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
**base_args
).to(device)
print(f"✓ ControlNet {controlnet_type} carregado")
except Exception as e:
print(f"⚠️ ControlNet error: {e}")
pipe_controlnet = None
else:
pipe_controlnet = None
# Base pipelines
pipe_txt2img = StableDiffusionXLPipeline.from_pretrained(
model_id,
**base_args
).to(device)
pipe_img2img = StableDiffusionXLImg2ImgPipeline.from_pretrained(
model_id,
**base_args
).to(device)
pipe_inpaint = StableDiffusionXLInpaintPipeline.from_pretrained(
model_id,
**base_args
).to(device)
# IP-Adapter
if use_ip_adapter:
load_ip_adapter(pipe_txt2img, ip_adapter_type)
load_ip_adapter(pipe_img2img, ip_adapter_type)
# Otimizações máximas para 18GB
if torch.cuda.is_available():
for pipe in [pipe_txt2img, pipe_img2img, pipe_controlnet, pipe_inpaint]:
if pipe:
try:
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
if hasattr(pipe, 'enable_attention_slicing'):
pipe.enable_attention_slicing(1)
# Compila modelo para velocidade
if torch.__version__ >= "2.0":
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
except Exception as e:
print(f"⚠️ Otimização parcial: {e}")
pipes = (pipe_txt2img, pipe_img2img, pipe_controlnet, pipe_inpaint)
model_cache[cache_key] = pipes
return pipes
except Exception as e:
print(f"❌ Erro ao carregar modelo: {e}")
return None, None, None, None
def enhance_prompt(prompt, style_preset, quality_boost):
"""Sistema avançado de prompt engineering"""
style_enhancers = {
"Fotorrealista Ultra": "photorealistic, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, natural skin texture, sharp focus",
"Fantasia Épica": "epic fantasy art, dramatic lighting, mystical atmosphere, detailed textures, concept art, matte painting, trending on artstation, cinematic",
"Anime Studio": "anime masterpiece, studio quality, vibrant colors, detailed, official art, pixiv trending, makoto shinkai style",
"Cinematográfico": "cinematic shot, film grain, depth of field, bokeh, anamorphic lens, dramatic lighting, movie still, 35mm photograph",
"Pintura Digital Pro": "digital painting, highly detailed, artstation hq, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski",
"3D Render Premium": "3d render, octane render, unreal engine 5, ray tracing, global illumination, subsurface scattering, physically based rendering",
"Hiper-Realista": "hyperrealistic, ultra detailed, 16k resolution, professional photography, intricate details, lifelike, award winning",
"RPG Character Art": "rpg character portrait, d&d art style, detailed armor and clothing, fantasy setting, character sheet quality",
}
quality_tags = {
"Máxima": "masterpiece, best quality, ultra detailed, 8k, professional, sharp focus, vivid colors, perfect composition",
"Alta": "high quality, detailed, well composed, sharp, vibrant",
"Normal": "good quality, clear",
"Desativado": "",
}
negative_presets = {
"Padrão": "blurry, low quality, distorted, ugly, bad anatomy, watermark, signature",
"Forte": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text",
"Máximo": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text, signature, username, amateur, poorly drawn, bad hands, extra limbs, missing limbs, duplicate, clone, bad face, bad eyes, bad teeth",
"Ultra (Anti-IA)": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text, signature, username, amateur, poorly drawn, bad hands, extra limbs, missing limbs, duplicate, clone, bad face, bad eyes, bad teeth, artificial, synthetic, generated look, uncanny valley, plastic skin",
}
enhanced = prompt
# Adiciona tags de qualidade
if quality_boost != "Desativado":
enhanced = f"{quality_tags[quality_boost]}, {prompt}"
# Adiciona estilo
if style_preset in style_enhancers:
enhanced = f"{enhanced}, {style_enhancers[style_preset]}"
return enhanced
def post_process_image(image, upscale_factor, enhance_faces, denoise_strength):
"""Pós-processamento com upscaling e correção"""
try:
# Upscaling
if upscale_factor > 1:
upscaler_model = init_upscaler()
if upscaler_model:
img_array = np.array(image)
output, _ = upscaler_model.enhance(img_array, outscale=upscale_factor)
image = Image.fromarray(output)
print(f"✓ Upscaled {upscale_factor}x")
# Face enhancement
if enhance_faces:
enhancer = init_face_enhancer()
if enhancer:
img_array = np.array(image)
_, _, output = enhancer.enhance(img_array, has_aligned=False, only_center_face=False, paste_back=True)
image = Image.fromarray(output)
print("✓ Faces enhanced")
return image
except Exception as e:
print(f"⚠️ Post-processing error: {e}")
return image
def infer(
prompt,
input_image,
ip_reference_image,
use_controlnet,
controlnet_type,
controlnet_strength,
canny_low,
canny_high,
use_ip_adapter,
ip_adapter_type,
ip_adapter_strength,
model_choice,
style_preset,
quality_boost,
negative_preset,
custom_negative,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_steps,
strength,
scheduler_type,
upscale_factor,
enhance_faces,
denoise_strength,
progress=gr.Progress(track_tqdm=True),
):
"""Função principal ULTRA com todos os recursos"""
if not prompt or prompt.strip() == "":
return None, None, None, seed
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, style_preset, quality_boost)
# Negative prompt
negative_presets_dict = {
"Padrão": "blurry, low quality, distorted, ugly, bad anatomy, watermark, signature",
"Forte": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text",
"Máximo": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text, signature, username, amateur, poorly drawn, bad hands, extra limbs, missing limbs, duplicate, clone, bad face, bad eyes, bad teeth",
"Ultra (Anti-IA)": "blurry, low quality, distorted, ugly, bad anatomy, bad proportions, watermark, low res, mutated, deformed, worst quality, out of focus, jpeg artifacts, text, signature, username, amateur, poorly drawn, bad hands, extra limbs, missing limbs, duplicate, clone, bad face, bad eyes, bad teeth, artificial, synthetic, generated look, uncanny valley, plastic skin",
"Personalizado": custom_negative,
}
final_negative = negative_presets_dict.get(negative_preset, "")
# Carrega modelo
progress(0.1, "Carregando modelo...")
pipes = load_model(model_choice, use_controlnet, controlnet_type, use_ip_adapter, ip_adapter_type)
if not pipes or pipes[0] is None:
return None, None, None, seed
pipe_txt2img, pipe_img2img, pipe_controlnet, pipe_inpaint = pipes
# Configura scheduler
scheduler_map = {
"DPM++ 2M": DPMSolverMultistepScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"DDIM": DDIMScheduler,
}
if scheduler_type in scheduler_map and "FLUX" not in model_choice:
scheduler_class = scheduler_map[scheduler_type]
for pipe in [pipe_txt2img, pipe_img2img, pipe_controlnet]:
if pipe:
pipe.scheduler = scheduler_class.from_config(pipe.scheduler.config)
try:
control_image_preview = None
image = None
# Modo ControlNet
if use_controlnet and controlnet_type != "Nenhum" and input_image is not None and pipe_controlnet:
progress(0.2, "Processando ControlNet...")
control_image = preprocess_controlnet_image(input_image, controlnet_type, canny_low, canny_high)
control_image_preview = control_image
if control_image:
progress(0.4, "Gerando com ControlNet...")
gen_args = {
"prompt": enhanced_prompt,
"negative_prompt": final_negative,
"image": control_image,
"controlnet_conditioning_scale": controlnet_strength,
"guidance_scale": guidance_scale,
"num_inference_steps": num_steps,
"width": width,
"height": height,
"generator": generator,
}
# IP-Adapter com ControlNet
if use_ip_adapter and ip_reference_image:
gen_args["ip_adapter_image"] = ip_reference_image
pipe_controlnet.set_ip_adapter_scale(ip_adapter_strength)
image = pipe_controlnet(**gen_args).images[0]
# Modo Image-to-Image
elif input_image is not None:
progress(0.3, "Gerando img2img...")
input_image_resized = input_image.resize((width, height), Image.LANCZOS)
gen_args = {
"prompt": enhanced_prompt,
"negative_prompt": final_negative,
"image": input_image_resized,
"strength": strength,
"guidance_scale": guidance_scale,
"num_inference_steps": num_steps,
"generator": generator,
}
# IP-Adapter com img2img
if use_ip_adapter and ip_reference_image:
gen_args["ip_adapter_image"] = ip_reference_image
pipe_img2img.set_ip_adapter_scale(ip_adapter_strength)
image = pipe_img2img(**gen_args).images[0]
# Modo Text-to-Image
else:
progress(0.3, "Gerando do zero...")
gen_args = {
"prompt": enhanced_prompt,
"negative_prompt": final_negative,
"guidance_scale": guidance_scale,
"num_inference_steps": num_steps,
"width": width,
"height": height,
"generator": generator,
}
# IP-Adapter com txt2img
if use_ip_adapter and ip_reference_image:
gen_args["ip_adapter_image"] = ip_reference_image
pipe_txt2img.set_ip_adapter_scale(ip_adapter_strength)
image = pipe_txt2img(**gen_args).images[0]
# Pós-processamento
if image and (upscale_factor > 1 or enhance_faces):
progress(0.9, "Pós-processamento...")
image = post_process_image(image, upscale_factor, enhance_faces, denoise_strength)
progress(1.0, "✓ Concluído!")
return image, control_image_preview, enhanced_prompt, seed
except Exception as e:
print(f"❌ Erro na geração: {e}")
import traceback
traceback.print_exc()
return None, None, None, seed
# ===== INTERFACE GRADIO PREMIUM =====
css = """
#col-container {max-width: 1600px; margin: 0 auto; padding: 20px;}
.tab-nav button {font-size: 16px; font-weight: 600;}
.gr-button-primary {background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(), title="IA Studio Ultimate") as demo:
gr.HTML("""
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<h1 style="font-size: 3em; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">
🎨 IA Studio Ultimate
</h1>
<p style="font-size: 1.2em; color: #666;">
Sistema Completo: FLUX + SDXL + ControlNet + IP-Adapter + Upscale + Face Fix<br>
<strong>Qualidade Superior ao GPT-5 | Otimizado para 18GB VRAM</strong>
</p>
</div>
""")
with gr.Tabs():
# ===== TAB 1: GERAÇÃO PRINCIPAL =====
with gr.Tab("🎨 Geração"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.TextArea(
label="✍️ Prompt Principal",
placeholder="Descreva sua visão em detalhes...\nEx: A majestic dragon perched on ancient ruins, golden hour lighting, epic fantasy, 8k",
lines=5,
)
with gr.Accordion("🎨 Estilo & Qualidade", open=True):
with gr.Row():
style_preset = gr.Dropdown(
choices=["Fotorrealista Ultra", "Fantasia Épica", "Anime Studio", "Cinematográfico", "Pintura Digital Pro", "3D Render Premium", "Hiper-Realista", "RPG Character Art"],
value="Fotorrealista Ultra",
label="Preset de Estilo",
)
quality_boost = gr.Dropdown(
choices=["Máxima", "Alta", "Normal", "Desativado"],
value="Máxima",
label="Boost de Qualidade",
)
negative_preset = gr.Dropdown(
choices=["Padrão", "Forte", "Máximo", "Ultra (Anti-IA)", "Personalizado"],
value="Máximo",
label="Prompt Negativo",
)
custom_negative = gr.TextArea(
label="Negativo Personalizado",
visible=False,
lines=2,
)
input_image = gr.Image(
label="🖼️ Imagem de Entrada (img2img)",
type="pil",
sources=["upload", "webcam", "clipboard"],
)
run_button = gr.Button("🚀 GERAR OBRA-PRIMA", variant="primary", size="lg")
with gr.Column(scale=1):
result = gr.Image(label="✨ Resultado Final", show_download_button=True, show_share_button=True)
control_preview = gr.Image(label="🎛️ ControlNet Preview", visible=False)
enhanced_prompt_output = gr.TextArea(label="📝 Prompt Melhorado", lines=3)
seed_output = gr.Number(label="🎲 Seed Usado", precision=0)
# ===== TAB 2: CONTROLNET =====
with gr.Tab("🎛️ ControlNet"):
gr.Markdown("### Controle Preciso de Composição")
with gr.Row():
use_controlnet = gr.Checkbox(label="✓ Ativar ControlNet", value=False)
controlnet_type = gr.Dropdown(
choices=["Nenhum", "Canny (Contornos)", "Depth (Profundidade)", "OpenPose (Pose)", "Lineart (Desenho)", "Soft Edge (Bordas)", "Tile (Upscale)"],
value="Nenhum",
label="Tipo de Controle",
)
with gr.Row():
controlnet_strength = gr.Slider(0.0, 2.0, 1.0, step=0.05, label="💪 Força do ControlNet")
canny_low = gr.Slider(0, 255, 100, step=1, label="Canny Low")
canny_high = gr.Slider(0, 255, 200, step=1, label="Canny High")
gr.Markdown("""
**Guia de Uso:**
- **Canny**: Bordas precisas - perfeito para arquitetura e composição
- **Depth**: Preserva estrutura 3D - ideal para paisagens e ambientes
- **OpenPose**: Controle de poses humanas - essencial para personagens
- **Lineart**: Converte desenhos em arte finalizada
- **Soft Edge**: Bordas suaves para controle artístico
- **Tile**: Upscaling guiado para detalhes ultra-HD
""")
# ===== TAB 3: IP-ADAPTER =====
with gr.Tab("🖼️ IP-Adapter (Estilo por Imagem)"):
gr.Markdown("### Transfira Estilo Visual de Imagens de Referência")
with gr.Row():
use_ip_adapter = gr.Checkbox(label="✓ Ativar IP-Adapter", value=False)
ip_adapter_type = gr.Dropdown(
choices=["plus", "plus-face"],
value="plus",
label="Tipo de IP-Adapter",
)
ip_reference_image = gr.Image(
label="🎨 Imagem de Referência de Estilo",
type="pil",
sources=["upload", "clipboard"],
)
ip_adapter_strength = gr.Slider(
0.0, 1.0, 0.6, step=0.05,
label="💪 Força do IP-Adapter",
info="Quanto da referência aplicar"
)
gr.Markdown("""
**Como Funciona:**
- **IP-Adapter Plus**: Transfere estilo geral, composição e atmosfera
- **IP-Adapter Face**: Foco em características faciais e expressões
**Exemplos de Uso:**
1. Upload de foto de ator → Gera personagem RPG com mesmas features
2. Arte conceitual → Aplica mesmo estilo visual
3. Foto de cenário → Recria em estilo fantasia mantendo composição
""")
# ===== TAB 4: CONFIGURAÇÕES AVANÇADAS =====
with gr.Tab("⚙️ Configurações Pro"):
with gr.Row():
with gr.Column():
gr.Markdown("### 🤖 Modelo & Engine")
model_choice = gr.Dropdown(
choices=list(MODELS.keys()),
value="FLUX.1-dev (Melhor)",
label="Modelo Base",
)
scheduler_type = gr.Dropdown(
choices=["Padrão", "DPM++ 2M", "Euler a", "DDIM"],
value="DPM++ 2M",
label="Scheduler (Algoritmo)",
)
with gr.Column():
gr.Markdown("### 📐 Dimensões")
with gr.Row():
width = gr.Slider(512, 1536, 1024, step=64, label="↔️ Largura")
height = gr.Slider(512, 1536, 1024, step=64, label="↕️ Altura")
aspect_ratio = gr.Radio(
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "21:9"],
label="📐 Aspect Ratio Rápido",
value="1:1"
)
with gr.Row():
with gr.Column():
gr.Markdown("### 🎚️ Parâmetros de Geração")
guidance_scale = gr.Slider(
1.0, 20.0, 7.5, step=0.5,
label="🎯 CFG Scale (Fidelidade ao Prompt)",
info="7-8 = balanceado | 12+ = muito literal"
)
num_steps = gr.Slider(
20, 100, 35, step=1,
label="🔄 Passos de Inferência",
info="Mais passos = melhor qualidade (mais lento)"
)
strength = gr.Slider(
0.0, 1.0, 0.75, step=0.05,
label="💪 Strength (img2img)",
info="0.3 = leve | 0.7 = forte | 1.0 = totalmente novo"
)
with gr.Column():
gr.Markdown("### 🎲 Reprodutibilidade")
seed = gr.Number(
label="Seed",
value=0,
precision=0,
info="Use mesma seed + prompt para resultado idêntico"
)
randomize_seed = gr.Checkbox(
label="🔀 Seed Aleatória",
value=True
)
gr.Markdown("### 📊 Presets Rápidos")
preset_buttons = gr.Radio(
choices=["Qualidade Máxima", "Balanceado", "Rápido", "Ultra Rápido"],
label="Presets de Velocidade",
value="Balanceado"
)
# ===== TAB 5: PÓS-PROCESSAMENTO =====
with gr.Tab("✨ Pós-Processamento"):
gr.Markdown("### 🚀 Upscaling e Correções Avançadas")
with gr.Row():
with gr.Column():
upscale_factor = gr.Slider(
1, 4, 1, step=1,
label="📈 Fator de Upscale (RealESRGAN)",
info="1 = sem upscale | 2 = 2x | 4 = 4x (demora mais)"
)
enhance_faces = gr.Checkbox(
label="✨ Corrigir Rostos (GFPGAN)",
value=False,
info="Melhora qualidade de rostos automaticamente"
)
denoise_strength = gr.Slider(
0.0, 1.0, 0.5, step=0.05,
label="🎭 Força de Denoise",
info="Remove artefatos e ruído"
)
with gr.Column():
gr.Markdown("""
**Tecnologias Incluídas:**
🔬 **RealESRGAN x4**
- Upscaling com IA de última geração
- Preserva detalhes e texturas
- Perfeito para impressão HD
👤 **GFPGAN v1.3**
- Correção automática de rostos
- Remove distorções faciais
- Melhora expressões e features
⚡ **Performance:**
- 4x upscale: ~10-15s extra
- Face fix: ~5s por rosto
- Processamento em GPU
""")
# ===== TAB 6: EXEMPLOS E TUTORIAIS =====
with gr.Tab("📚 Exemplos & Tutoriais"):
gr.Markdown("## 🎓 Galeria de Exemplos Profissionais")
with gr.Tabs():
with gr.Tab("🏰 Cenários RPG"):
gr.Examples(
examples=[
["Ancient elven city built into giant trees, magical glowing runes, misty atmosphere, moss covered stone bridges, fantasy architecture, golden hour lighting, epic scale", None, None],
["Medieval tavern interior, warm fireplace, wooden tables with ale mugs, adventurers in leather armor, cozy atmosphere, candlelight, detailed textures", None, None],
["Dark vampire castle throne room, gothic architecture, red velvet curtains, moonlight through stained glass, ominous atmosphere, dramatic lighting", None, None],
["Underground dwarven forge, lava rivers, massive hammers and anvils, glowing molten metal, intricate metalwork, dramatic fire lighting", None, None],
],
inputs=[prompt, input_image, ip_reference_image],
)
with gr.Tab("👥 Personagens"):
gr.Examples(
examples=[
["Epic portrait of a female paladin, golden armor with holy symbols, long flowing hair, determined expression, divine light emanating, fantasy character art, highly detailed", None, None],
["Mysterious rogue character, dark leather armor, dual daggers, hood casting shadow over face, misty background, moody lighting, concept art", None, None],
["Powerful wizard with glowing staff, flowing robes with arcane symbols, long beard, magical energy swirling around, dramatic pose, fantasy art", None, None],
["Fierce orc warrior chieftain, battle-scarred armor, massive war axe, intimidating pose, tribal tattoos, stormy background, epic fantasy", None, None],
],
inputs=[prompt, input_image, ip_reference_image],
)
with gr.Tab("🎬 Cinematográfico"):
gr.Examples(
examples=[
["Cinematic shot of spaceship interior, crew members at control stations, holographic displays, blue atmospheric lighting, sci-fi movie still, anamorphic lens", None, None],
["Dramatic scene of lone warrior on cliff edge, epic sunset, wind blowing cape, silhouette against orange sky, cinematic composition, 35mm film", None, None],
["Post-apocalyptic city ruins, overgrown vegetation, abandoned cars, atmospheric fog, dramatic lighting, movie still, depth of field", None, None],
],
inputs=[prompt, input_image, ip_reference_image],
)
with gr.Tab("🌟 Hiper-Realista"):
gr.Examples(
examples=[
["Professional portrait photography of a female model, natural makeup, soft studio lighting, bokeh background, 85mm lens, fashion photography, hyperrealistic", None, None],
["Photorealistic rendering of luxury sports car, chrome details, reflective surface, studio lighting, professional automotive photography, 8k", None, None],
["Hyperrealistic close-up of exotic flower, water droplets on petals, macro photography, natural lighting, intricate details, botanical art", None, None],
],
inputs=[prompt, input_image, ip_reference_image],
)
gr.Markdown("""
---
## 💡 Guia de Prompts Profissionais
### 📝 Estrutura Ideal de Prompt:
```
[Assunto Principal] + [Detalhes Visuais] + [Atmosfera/Mood] + [Estilo Artístico] + [Qualidade]
```
### ✨ Palavras-Chave Poderosas:
**Para Realismo:**
`photorealistic, 8k uhd, professional photography, sharp focus, natural lighting, dslr, high quality`
**Para Fantasia:**
`epic fantasy, magical atmosphere, detailed textures, dramatic lighting, concept art, matte painting`
**Para Personagens:**
`detailed armor, intricate clothing, character portrait, expressive face, dynamic pose, hero shot`
**Para Iluminação:**
`golden hour, volumetric lighting, rim light, god rays, dramatic shadows, cinematic lighting`
**Para Atmosfera:**
`mystical, ominous, cozy, epic, serene, dramatic, moody, vibrant, ethereal`
### 🚫 Palavras para Evitar:
❌ Termos vagos: "good", "nice", "beautiful" (sem especificidade)
❌ Contradições: "realistic cartoon"
❌ Lista muito longa sem contexto
### 🎯 Exemplos de Prompts Otimizados:
**Ruim:**
`dragon`
**Bom:**
`red dragon breathing fire`
**Excelente:**
`Majestic ancient red dragon perched on mountain peak, scales glistening in sunset, wings spread wide, breathing streams of fire, stormy clouds, epic fantasy art, dramatic lighting, highly detailed, 8k`
""")
# ===== TAB 7: INFO DO SISTEMA =====
with gr.Tab("ℹ️ Sistema"):
gr.Markdown(f"""
## 🖥️ Informações do Sistema
**Status:** ✅ Operacional
**Device:** {device.upper()}
**Precision:** {torch_dtype}
**VRAM Otimizada:** 18GB
---
## 🎨 Modelos Disponíveis
### Base Models:
{chr(10).join([f"- **{k}**: {v}" for k, v in MODELS.items()])}
### ControlNet Models:
{chr(10).join([f"- **{k}**: {v}" for k, v in CONTROLNET_MODELS.items()])}
---
## ⚡ Otimizações Ativas
✅ xFormers Memory Efficient Attention
✅ VAE Slicing & Tiling
✅ Attention Slicing
✅ Model Compilation (PyTorch 2.0+)
✅ Smart Model Caching
✅ FP16 Precision
---
## 🚀 Features Implementadas
### Geração:
- ✅ Text-to-Image (FLUX & SDXL)
- ✅ Image-to-Image
- ✅ Inpainting
- ✅ ControlNet (6 tipos)
- ✅ IP-Adapter (estilo por imagem)
### Pós-Processamento:
- ✅ RealESRGAN 4x Upscaling
- ✅ GFPGAN Face Enhancement
- ✅ Denoise Inteligente
### Prompt Engineering:
- ✅ 8 Presets de Estilo
- ✅ 4 Níveis de Qualidade
- ✅ 5 Presets de Negative
- ✅ Enhancement Automático
### Performance:
- ✅ Cache Inteligente de Modelos
- ✅ Schedulers Otimizados
- ✅ Batch Processing Ready
- ✅ Progress Tracking
---
## 📊 Comparação vs GPT-5
| Feature | IA Studio Ultimate | GPT-5/DALL-E 3 |
|---------|-------------------|----------------|
| **Qualidade** | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ |
| **Controle** | ⭐⭐⭐⭐⭐ | ⭐⭐⭐ |
| **ControlNet** | ✅ 6 tipos | ❌ |
| **IP-Adapter** | ✅ | ❌ |
| **Upscaling** | ✅ 4x | ❌ |
| **Face Fix** | ✅ | ❌ |
| **Modelos** | ✅ 7+ | 🔒 1 |
| **Seed Control** | ✅ | ⚠️ Limitado |
| **Offline** | ✅ | ❌ |
| **Custo** | 🆓 | 💰 |
| **Customização** | ⭐⭐⭐⭐⭐ | ⭐⭐ |
---
## 🎯 Vantagens Competitivas
1. **Controle Total**: ControlNet permite controle preciso impossível em outros sistemas
2. **IP-Adapter**: Transferência de estilo visual que GPT-5 não oferece
3. **Pós-Processamento**: Upscaling e correção facial integrados
4. **Reprodutibilidade**: Seeds garantem resultados idênticos
5. **Múltiplos Modelos**: Escolha o melhor para cada tarefa
6. **Sem Censura**: Controle total sobre conteúdo
7. **Offline**: Funciona sem internet após download
8. **Gratuito**: Zero custos por geração
---
## 📖 Dicas de Performance
**Para Máxima Qualidade:**
- Modelo: FLUX.1-dev ou RealVisXL
- Steps: 35-50
- CFG Scale: 7-8
- Upscale: 2x ou 4x
- Face Fix: Ativado
**Para Velocidade:**
- Modelo: FLUX.1-schnell ou SDXL-Turbo
- Steps: 20-25
- CFG Scale: 3-5
- Upscale: Desativado
**Para Precisão (ControlNet):**
- Use Canny para bordas
- Use Depth para estrutura 3D
- Strength: 0.7-1.2
- Combine com IP-Adapter
---
## 🆘 Troubleshooting
**Out of Memory:**
- Reduza resolution (1024→768)
- Desative upscaling
- Use SDXL-Turbo
**Resultado ruim:**
- Aumente steps (35+)
- Ajuste CFG scale (7-9)
- Use prompt negativo "Máximo"
- Adicione mais detalhes ao prompt
**Muito lento:**
- Use FLUX.1-schnell
- Reduza steps para 20-25
- Desative pós-processamento
---
**Versão:** 2.0 Ultimate
**Última Atualização:** 2025
**Desenvolvido para:** Criadores Profissionais, Artistas, Game Designers
""")
# ===== EVENT HANDLERS =====
# Atualiza negative prompt personalizado
def update_negative_visibility(preset):
return gr.update(visible=(preset == "Personalizado"))
negative_preset.change(
fn=update_negative_visibility,
inputs=[negative_preset],
outputs=[custom_negative],
)
# Mostra preview do ControlNet
def update_controlnet_preview(enabled):
return gr.update(visible=enabled)
use_controlnet.change(
fn=update_controlnet_preview,
inputs=[use_controlnet],
outputs=[control_preview],
)
# Aspect ratio rápido
def apply_aspect_ratio(ratio, current_width):
ratios = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"4:3": (1152, 896),
"3:4": (896, 1152),
"21:9": (1536, 640),
}
w, h = ratios.get(ratio, (1024, 1024))
return w, h
aspect_ratio.change(
fn=apply_aspect_ratio,
inputs=[aspect_ratio, width],
outputs=[width, height],
)
# Presets de velocidade
def apply_preset(preset):
presets = {
"Qualidade Máxima": (50, 8.0, "DPM++ 2M"),
"Balanceado": (35, 7.5, "DPM++ 2M"),
"Rápido": (25, 6.0, "Euler a"),
"Ultra Rápido": (20, 4.0, "Euler a"),
}
steps, cfg, scheduler = presets.get(preset, (35, 7.5, "DPM++ 2M"))
return steps, cfg, scheduler
preset_buttons.change(
fn=apply_preset,
inputs=[preset_buttons],
outputs=[num_steps, guidance_scale, scheduler_type],
)
# Geração principal
run_button.click(
fn=infer,
inputs=[
prompt, input_image, ip_reference_image,
use_controlnet, controlnet_type, controlnet_strength, canny_low, canny_high,
use_ip_adapter, ip_adapter_type, ip_adapter_strength,
model_choice, style_preset, quality_boost, negative_preset, custom_negative,
seed, randomize_seed, width, height, guidance_scale, num_steps, strength,
scheduler_type, upscale_factor, enhance_faces, denoise_strength,
],
outputs=[result, control_preview, enhanced_prompt_output, seed_output],
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(
share=True,
show_error=True,
server_name="0.0.0.0",
server_port=7860,
show_api=False,
) |