Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import logging | |
| import pprint | |
| from huggingface_hub import snapshot_download | |
| from src.backend.manage_requests import ( | |
| FAILED_STATUS, | |
| FINISHED_STATUS, | |
| PENDING_STATUS, | |
| RUNNING_STATUS, | |
| check_completed_evals, | |
| get_eval_requests, | |
| set_eval_request, | |
| ) | |
| from src.backend.run_eval_suite_lighteval import run_evaluation | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.envs import ( | |
| ACCELERATOR, | |
| API, | |
| EVAL_REQUESTS_PATH_BACKEND, | |
| EVAL_RESULTS_PATH_BACKEND, | |
| LIMIT, | |
| QUEUE_REPO, | |
| REGION, | |
| RESULTS_REPO, | |
| TASKS_LIGHTEVAL, | |
| TOKEN, | |
| VENDOR, | |
| ) | |
| from src.logging import setup_logger | |
| logging.getLogger("openai").setLevel(logging.WARNING) | |
| logger = setup_logger(__name__) | |
| # logging.basicConfig(level=logging.ERROR) | |
| pp = pprint.PrettyPrinter(width=80) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| revision="main", | |
| local_dir=EVAL_RESULTS_PATH_BACKEND, | |
| repo_type="dataset", | |
| max_workers=60, | |
| token=TOKEN, | |
| ) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, | |
| revision="main", | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| repo_type="dataset", | |
| max_workers=60, | |
| token=TOKEN, | |
| ) | |
| def run_auto_eval(): | |
| current_pending_status = [PENDING_STATUS] | |
| # pull the eval dataset from the hub and parse any eval requests | |
| # check completed evals and set them to finished | |
| check_completed_evals( | |
| api=API, | |
| checked_status=RUNNING_STATUS, | |
| completed_status=FINISHED_STATUS, | |
| failed_status=FAILED_STATUS, | |
| hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| hf_repo_results=RESULTS_REPO, | |
| local_dir_results=EVAL_RESULTS_PATH_BACKEND, | |
| ) | |
| # Get all eval request that are PENDING, if you want to run other evals, change this parameter | |
| eval_requests = get_eval_requests( | |
| job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND | |
| ) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests = sort_models_by_priority(api=API, models=eval_requests) | |
| logger.info(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
| if len(eval_requests) == 0: | |
| return | |
| eval_request = eval_requests[0] | |
| logger.info(pp.pformat(eval_request)) | |
| set_eval_request( | |
| api=API, | |
| eval_request=eval_request, | |
| set_to_status=RUNNING_STATUS, | |
| hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| ) | |
| # This needs to be done | |
| # instance_size, instance_type = get_instance_for_model(eval_request) | |
| # For GPU | |
| # instance_size, instance_type = "small", "g4dn.xlarge" | |
| # For CPU | |
| # Updated naming available at https://huggingface.co/docs/inference-endpoints/pricing | |
| instance_size, instance_type = "x4", "intel-icl" | |
| logger.info( | |
| f"Starting Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}" | |
| ) | |
| run_evaluation( | |
| eval_request=eval_request, | |
| task_names=TASKS_LIGHTEVAL, | |
| local_dir=EVAL_RESULTS_PATH_BACKEND, | |
| batch_size=1, | |
| accelerator=ACCELERATOR, | |
| region=REGION, | |
| vendor=VENDOR, | |
| instance_size=instance_size, | |
| instance_type=instance_type, | |
| limit=LIMIT, | |
| ) | |
| logger.info( | |
| f"Completed Evaluation of {eval_request.json_filepath} on Inference endpoints: {instance_size} {instance_type}" | |
| ) | |
| if __name__ == "__main__": | |
| run_auto_eval() | |