Spaces:
Runtime error
Runtime error
haotongl
commited on
Commit
·
141f1e8
1
Parent(s):
71ea1f8
inital version
Browse files
app.py
CHANGED
|
@@ -1,12 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
@spaces.GPU
|
| 5 |
-
def
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import shutil
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Union
|
| 6 |
+
import atexit
|
| 7 |
import spaces
|
| 8 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 9 |
+
import open3d as o3d
|
| 10 |
+
import trimesh
|
| 11 |
+
|
| 12 |
import gradio as gr
|
| 13 |
+
from gradio_imageslider import ImageSlider
|
| 14 |
+
import cv2
|
| 15 |
+
import numpy as np
|
| 16 |
+
import click
|
| 17 |
+
import imageio
|
| 18 |
+
from promptda.promptda import PromptDA
|
| 19 |
+
from promptda.utils.io_wrapper import load_image, load_depth
|
| 20 |
+
from promptda.utils.depth_utils import visualize_depth, unproject_depth
|
| 21 |
+
# import torch
|
| 22 |
+
DEVICE = 'cuda'
|
| 23 |
+
# if torch.cuda.is_available(
|
| 24 |
+
# ) else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
| 25 |
+
# model = PromptDA.from_pretrained('depth-anything/promptda_vitl').to(DEVICE).eval()
|
| 26 |
+
model = PromptDA.from_pretrained('depth-anything/promptda_vitl').eval()
|
| 27 |
+
thread_pool_executor = ThreadPoolExecutor(max_workers=1)
|
| 28 |
+
|
| 29 |
+
def delete_later(path: Union[str, os.PathLike], delay: int = 300):
|
| 30 |
+
print(f"Deleting file: {path}")
|
| 31 |
+
def _delete():
|
| 32 |
+
try:
|
| 33 |
+
if os.path.isfile(path):
|
| 34 |
+
os.remove(path)
|
| 35 |
+
print(f"Deleted file: {path}")
|
| 36 |
+
elif os.path.isdir(path):
|
| 37 |
+
shutil.rmtree(path)
|
| 38 |
+
print(f"Deleted directory: {path}")
|
| 39 |
+
except:
|
| 40 |
+
pass
|
| 41 |
+
def _wait_and_delete():
|
| 42 |
+
time.sleep(delay)
|
| 43 |
+
_delete(path)
|
| 44 |
+
thread_pool_executor.submit(_wait_and_delete)
|
| 45 |
+
atexit.register(_delete)
|
| 46 |
+
|
| 47 |
|
| 48 |
@spaces.GPU
|
| 49 |
+
def run_with_gpu(image, prompt_depth):
|
| 50 |
+
image = image.to(DEVICE)
|
| 51 |
+
prompt_depth = prompt_depth.to(DEVICE)
|
| 52 |
+
model.to(DEVICE)
|
| 53 |
+
depth = model.predict(image, prompt_depth)
|
| 54 |
+
depth = depth[0, 0].detach().cpu().numpy()
|
| 55 |
+
return depth
|
| 56 |
+
|
| 57 |
+
def check_is_stray_scanner_app_capture(input_dir):
|
| 58 |
+
assert os.path.exists(os.path.join(input_dir, 'rgb.mp4')), 'rgb.mp4 not found'
|
| 59 |
+
pass
|
| 60 |
+
|
| 61 |
+
def run(input_file, resolution):
|
| 62 |
+
# unzip zip file
|
| 63 |
+
input_file = input_file.name
|
| 64 |
+
root_dir = os.path.dirname(input_file)
|
| 65 |
+
scene_name = input_file.split('/')[-1].split('.')[0]
|
| 66 |
+
input_dir = os.path.join(root_dir, scene_name)
|
| 67 |
+
cmd = f'unzip -o {input_file} -d {root_dir}'
|
| 68 |
+
os.system(cmd)
|
| 69 |
+
check_is_stray_scanner_app_capture(input_dir)
|
| 70 |
+
|
| 71 |
+
# extract rgb images
|
| 72 |
+
os.makedirs(os.path.join(input_dir, 'rgb'), exist_ok=True)
|
| 73 |
+
cmd = f'ffmpeg -i {input_dir}/rgb.mp4 -start_number 0 -frames:v 10 -q:v 2 {input_dir}/rgb/%06d.jpg'
|
| 74 |
+
os.system(cmd)
|
| 75 |
+
|
| 76 |
+
# Loading & Inference
|
| 77 |
+
image_path = os.path.join(input_dir, 'rgb', '000000.jpg')
|
| 78 |
+
image = load_image(image_path)
|
| 79 |
+
prompt_depth_path = os.path.join(input_dir, 'depth/000000.png')
|
| 80 |
+
prompt_depth = load_depth(prompt_depth_path)
|
| 81 |
+
depth = run_with_gpu(image, prompt_depth)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
color = (image[0].permute(1,2,0).cpu().numpy() * 255.).astype(np.uint8)
|
| 85 |
+
|
| 86 |
+
# Visualization file
|
| 87 |
+
vis_depth, depth_min, depth_max = visualize_depth(depth, ret_minmax=True)
|
| 88 |
+
vis_prompt_depth = visualize_depth(prompt_depth[0, 0].detach().cpu().numpy(), depth_min=depth_min, depth_max=depth_max)
|
| 89 |
+
vis_prompt_depth = cv2.resize(vis_prompt_depth, (vis_depth.shape[1], vis_depth.shape[0]), interpolation=cv2.INTER_NEAREST)
|
| 90 |
+
|
| 91 |
+
# PLY File
|
| 92 |
+
ixt_path = os.path.join(input_dir, f'camera_matrix.csv')
|
| 93 |
+
ixt = np.loadtxt(ixt_path, delimiter=',')
|
| 94 |
+
orig_max = 1920
|
| 95 |
+
now_max = max(color.shape[1], color.shape[0])
|
| 96 |
+
scale = orig_max / now_max
|
| 97 |
+
ixt[:2] = ixt[:2] / scale
|
| 98 |
+
pcd = unproject_depth(depth, ixt=ixt, color=color, ret_pcd=True)
|
| 99 |
+
ply_path = os.path.join(input_dir, f'pointcloud.ply')
|
| 100 |
+
o3d.io.write_point_cloud(ply_path, pcd)
|
| 101 |
+
|
| 102 |
+
glb_path = os.path.join(input_dir, f'pointcloud.glb')
|
| 103 |
+
scene_3d = trimesh.Scene()
|
| 104 |
+
glb_colors = np.asarray(pcd.colors).astype(np.float32)
|
| 105 |
+
glb_colors = np.concatenate([glb_colors, np.ones_like(glb_colors[:, :1])], axis=1)
|
| 106 |
+
# glb_colors = (np.asarray(pcd.colors) * 255).astype(np.uint8)
|
| 107 |
+
pcd_data = trimesh.PointCloud(
|
| 108 |
+
vertices=np.asarray(pcd.points) * np.array([[1, -1, -1]]),
|
| 109 |
+
colors=glb_colors.astype(np.float64),
|
| 110 |
+
)
|
| 111 |
+
scene_3d.add_geometry(pcd_data)
|
| 112 |
+
scene_3d.export(file_obj=glb_path)
|
| 113 |
+
# o3d.io.write_point_cloud(glb_path, pcd)
|
| 114 |
+
|
| 115 |
+
# Depth Map Original Value
|
| 116 |
+
depth_path = os.path.join(input_dir, f'depth.png')
|
| 117 |
+
output_depth = (depth * 1000).astype(np.uint16)
|
| 118 |
+
imageio.imwrite(depth_path, output_depth)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
delete_later(Path(input_dir))
|
| 122 |
+
delete_later(Path(input_file))
|
| 123 |
+
|
| 124 |
+
return color, (vis_depth, vis_prompt_depth), Path(glb_path), Path(ply_path).as_posix(), Path(depth_path).as_posix()
|
| 125 |
+
|
| 126 |
+
DESCRIPTION = """
|
| 127 |
+
# Estimate accurate and high-resolution depth maps from your iPhone capture.
|
| 128 |
+
|
| 129 |
+
Project Page: [Prompt Depth Anything](https://promptda.github.io/)
|
| 130 |
+
|
| 131 |
+
## Requirements:
|
| 132 |
+
1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models
|
| 133 |
+
2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662)
|
| 134 |
+
|
| 135 |
+
## Testing Steps:
|
| 136 |
+
1. Capture a scene with the Stray Scanner App.
|
| 137 |
+
2. Use the iPhone [Files App](https://apps.apple.com/us/app/files/id1232058109) to compress it into a zip file and transfer it to your computer. (Long press the capture folder to compress)
|
| 138 |
+
3. Upload the zip file and click "Submit" to get the depth map of the first frame.
|
| 139 |
+
|
| 140 |
+
Note:
|
| 141 |
+
- Currently, this demo only supports inference for the first frame. If you need to obtain all depth frames, please refer to our [GitHub repo](https://github.com/DepthAnything/PromptDA).
|
| 142 |
+
- The depth map is stored as uint16, with a unit of millimeters.
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
# @click.command()
|
| 146 |
+
# @click.option('--share', is_flag=True, help='Whether to run the app in shared mode.')
|
| 147 |
+
# def main():
|
| 148 |
+
# with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 149 |
+
# gr.Markdown(DESCRIPTION)
|
| 150 |
+
|
| 151 |
+
# with gr.Row():
|
| 152 |
+
# input_file = gr.File(type="filepath", label="Stray scanner app capture zip file")
|
| 153 |
+
# resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
|
| 154 |
+
# submit_btn = gr.Button("Submit")
|
| 155 |
+
|
| 156 |
+
# # gr.Examples(examples=[
|
| 157 |
+
# # ["data/assets/example0_chair.zip", "756x1008"]
|
| 158 |
+
# # ],
|
| 159 |
+
# # inputs=[input_file, resolution],
|
| 160 |
+
# # label="Examples",
|
| 161 |
+
# # )
|
| 162 |
+
|
| 163 |
+
# with gr.Row():
|
| 164 |
+
# with gr.Column():
|
| 165 |
+
# output_rgb = gr.Image(type="numpy", label="RGB Image")
|
| 166 |
+
# with gr.Column():
|
| 167 |
+
# output_depths = ImageSlider(label="Output depth / prompt depth", position=0.5)
|
| 168 |
+
|
| 169 |
+
# with gr.Row():
|
| 170 |
+
# with gr.Column():
|
| 171 |
+
# output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0])
|
| 172 |
+
# with gr.Column():
|
| 173 |
+
# output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file", height=30)
|
| 174 |
+
# output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file", height=30)
|
| 175 |
+
# outputs = [
|
| 176 |
+
# output_rgb,
|
| 177 |
+
# output_depths,
|
| 178 |
+
# output_3d_model,
|
| 179 |
+
# output_ply,
|
| 180 |
+
# output_depth_map,
|
| 181 |
+
# ]
|
| 182 |
+
# gr.Examples(examples=[
|
| 183 |
+
# ["data/assets/example0_chair.zip", "756x1008"]
|
| 184 |
+
# ],
|
| 185 |
+
# fn=run,
|
| 186 |
+
# inputs=[input_file, resolution],
|
| 187 |
+
# outputs=outputs,
|
| 188 |
+
# label="Examples",
|
| 189 |
+
# cache_examples=True,
|
| 190 |
+
# )
|
| 191 |
+
# submit_btn.click(run,
|
| 192 |
+
# inputs=[input_file, resolution],
|
| 193 |
+
# outputs=outputs)
|
| 194 |
+
|
| 195 |
+
# demo.launch()
|
| 196 |
+
def main():
|
| 197 |
+
gr.Interface(
|
| 198 |
+
fn=run,
|
| 199 |
+
inputs=[
|
| 200 |
+
gr.File(type="filepath", label="Stray scanner app capture zip file"),
|
| 201 |
+
gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
|
| 202 |
+
],
|
| 203 |
+
outputs=[
|
| 204 |
+
gr.Image(type="numpy", label="RGB Image"),
|
| 205 |
+
ImageSlider(label="Depth map / prompt depth", position=0.5),
|
| 206 |
+
gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0]),
|
| 207 |
+
gr.File(type="filepath", label="Download the unprojected point cloud as .ply file"),
|
| 208 |
+
gr.File(type="filepath", label="Download the depth map as .png file"),
|
| 209 |
+
],
|
| 210 |
+
title=None,
|
| 211 |
+
description=DESCRIPTION,
|
| 212 |
+
clear_btn=None,
|
| 213 |
+
allow_flagging="never",
|
| 214 |
+
theme=gr.themes.Soft(),
|
| 215 |
+
examples=[
|
| 216 |
+
["data/assets/example0_chair.zip"]
|
| 217 |
+
]
|
| 218 |
+
).launch()
|
| 219 |
+
main()
|