Spaces:
Sleeping
Sleeping
File size: 7,857 Bytes
a2a2664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
"""
Asynchronous inference utilities for polymer classification.
Supports async processing for improved UI responsiveness.
"""
import concurrent.futures
import time
from typing import Dict, Any, List, Optional, Callable
from dataclasses import dataclass
from enum import Enum
import streamlit as st
import numpy as np
class InferenceStatus(Enum):
"""Enumeration of possible statuses for an inference task."""
PENDING = "pending"
RUNNING = "running"
COMPLETED = "completed"
FAILED = "failed"
@dataclass
class InferenceTask:
"""Represents an asynchronous inference task."""
task_id: str
model_name: str
input_data: np.ndarray
status: InferenceStatus = InferenceStatus.PENDING
result: Optional[Dict[str, Any]] = None
error: Optional[str] = None
start_time: Optional[float] = None
end_time: Optional[float] = None
@property
def duration(self) -> Optional[float]:
if self.start_time and self.end_time:
return self.end_time - self.start_time
return None
class AsyncInferenceManager:
"""Manages asynchronous inference tasks for multiple models."""
def __init__(self, max_workers: int = 3):
self.max_workers = max_workers
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)
self.tasks: Dict[str, InferenceTask] = {}
self._task_counter = 0
def generate_task_id(self) -> str:
"""Generate unique task ID."""
self._task_counter += 1
return f"task_{self._task_counter}_{int(time.time() * 1000)}"
def submit_inference(
self,
model_name: str,
input_data: np.ndarray,
inference_func: Callable,
**kwargs,
) -> str:
"""Submit an inference task for asynchronous execution."""
task_id = self.generate_task_id()
task = InferenceTask(
task_id=task_id, model_name=model_name, input_data=input_data
)
self.tasks[task_id] = task
# Submit to thread pool
self.executor.submit(self._run_inference, task, inference_func, **kwargs)
return task_id
def _run_inference(
self, task: InferenceTask, inference_func: Callable, **kwargs
) -> None:
"""Execute inference task."""
try:
task.status = InferenceStatus.RUNNING
task.start_time = time.time()
# Run inference
result = inference_func(task.input_data, task.model_name, **kwargs)
task.result = result
task.status = InferenceStatus.COMPLETED
task.end_time = time.time()
except (
ValueError,
TypeError,
RuntimeError,
) as e: # Replace with specific exceptions
task.error = str(e)
task.status = InferenceStatus.FAILED
task.end_time = time.time()
def get_task_status(self, task_id: str) -> Optional[InferenceTask]:
"""Get status of a specific task."""
return self.tasks.get(task_id)
def get_completed_tasks(self) -> List[InferenceTask]:
"""Get all completed tasks."""
return [
task
for task in self.tasks.values()
if task.status == InferenceStatus.COMPLETED
]
def get_failed_tasks(self) -> List[InferenceTask]:
"""Get all failed tasks."""
return [
task
for task in self.tasks.values()
if task.status == InferenceStatus.FAILED
]
def wait_for_completion(self, task_ids: List[str], timeout: float = 30.0) -> bool:
"""Wait for specific tasks to complete."""
start_time = time.time()
while time.time() - start_time < timeout:
all_done = all(
self.tasks[tid].status
in [InferenceStatus.COMPLETED, InferenceStatus.FAILED]
for tid in task_ids
if tid in self.tasks
)
if all_done:
return True
time.sleep(0.1)
return False
def cleanup_completed_tasks(self, max_age: float = 300.0) -> None:
"""Clean up old completed tasks."""
current_time = time.time()
to_remove = []
for task_id, task in self.tasks.items():
if (
task.end_time
and current_time - task.end_time > max_age
and task.status in [InferenceStatus.COMPLETED, InferenceStatus.FAILED]
):
to_remove.append(task_id)
for task_id in to_remove:
del self.tasks[task_id]
def shutdown(self):
"""Shutdown the executor."""
self.executor.shutdown(wait=True)
class AsyncInferenceManagerSingleton:
"""Singleton wrapper for AsyncInferenceManager."""
_instance: Optional[AsyncInferenceManager] = None
@classmethod
def get_instance(cls) -> AsyncInferenceManager:
"""Get the singleton instance of AsyncInferenceManager."""
if cls._instance is None:
cls._instance = AsyncInferenceManager()
return cls._instance
def get_async_inference_manager() -> AsyncInferenceManager:
"""Get or create the singleton async inference manager."""
return AsyncInferenceManagerSingleton.get_instance()
@st.cache_resource
def get_cached_async_manager():
"""Get cached async inference manager for Streamlit."""
return AsyncInferenceManager()
def submit_batch_inference(
model_names: List[str], input_data: np.ndarray, inference_func: Callable, **kwargs
) -> List[str]:
"""Submit batch inference for multiple models."""
manager = get_async_inference_manager()
task_ids = []
for model_name in model_names:
task_id = manager.submit_inference(
model_name=model_name,
input_data=input_data,
inference_func=inference_func,
**kwargs,
)
task_ids.append(task_id)
return task_ids
def check_inference_progress(task_ids: List[str]) -> Dict[str, Dict[str, Any]]:
"""Check progress of multiple inference tasks."""
manager = get_async_inference_manager()
progress = {}
for task_id in task_ids:
task = manager.get_task_status(task_id)
if task:
progress[task_id] = {
"model_name": task.model_name,
"status": task.status.value,
"duration": task.duration,
"error": task.error,
}
return progress
def wait_for_batch_completion(
task_ids: List[str],
timeout: float = 30.0,
progress_callback: Optional[Callable] = None,
) -> Dict[str, Any]:
"""Wait for batch inference completion with progress updates."""
manager = get_async_inference_manager()
start_time = time.time()
while time.time() - start_time < timeout:
progress = check_inference_progress(task_ids)
if progress_callback:
progress_callback(progress)
# Check if all tasks are done
all_done = all(
status["status"] in ["completed", "failed"] for status in progress.values()
)
if all_done:
break
time.sleep(0.2)
# Collect results
results = {}
for task_id in task_ids:
task = manager.get_task_status(task_id)
if task:
if task.status == InferenceStatus.COMPLETED:
results[task.model_name] = task.result
elif task.status == InferenceStatus.FAILED:
results[task.model_name] = {"error": task.error}
return results
|