File size: 4,584 Bytes
a602039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""

Generate demo datasets for testing the training functionality.

"""

import numpy as np
from pathlib import Path
import sys
import os

# Add project root to path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))


def generate_synthetic_spectrum(

    wavenumbers, base_intensity=0.5, noise_level=0.05, peaks=None

):
    """Generate a synthetic spectrum with specified characteristics"""
    spectrum = np.full_like(wavenumbers, base_intensity)

    # Add some peaks
    if peaks is None:
        peaks = [
            (1000, 0.3, 50),
            (1500, 0.5, 80),
            (2000, 0.2, 40),
        ]  # (center, height, width)

    for center, height, width in peaks:
        peak = height * np.exp(-(((wavenumbers - center) / width) ** 2))
        spectrum += peak

    # Add noise
    spectrum += np.random.normal(0, noise_level, len(wavenumbers))

    # Ensure positive values
    spectrum = np.maximum(spectrum, 0.01)

    return spectrum


def create_demo_datasets():
    """Create demo datasets for training"""

    # Define wavenumber range (typical for Raman)
    wavenumbers = np.linspace(400, 3500, 200)

    # Create stable polymer samples
    stable_dir = Path("datasets/demo_dataset/stable")
    stable_dir.mkdir(parents=True, exist_ok=True)

    print("Generating stable polymer samples...")
    for i in range(20):
        # Stable polymers - higher intensity, sharper peaks
        stable_peaks = [
            (
                800 + np.random.normal(0, 20),
                0.4 + np.random.normal(0, 0.05),
                30 + np.random.normal(0, 5),
            ),
            (
                1200 + np.random.normal(0, 30),
                0.6 + np.random.normal(0, 0.08),
                40 + np.random.normal(0, 8),
            ),
            (
                1600 + np.random.normal(0, 25),
                0.3 + np.random.normal(0, 0.04),
                35 + np.random.normal(0, 6),
            ),
            (
                2900 + np.random.normal(0, 40),
                0.8 + np.random.normal(0, 0.1),
                60 + np.random.normal(0, 10),
            ),
        ]

        spectrum = generate_synthetic_spectrum(
            wavenumbers,
            base_intensity=0.4 + np.random.normal(0, 0.05),
            noise_level=0.02,
            peaks=stable_peaks,
        )

        # Save as two-column format
        data = np.column_stack([wavenumbers, spectrum])
        np.savetxt(stable_dir / f"stable_sample_{i:02d}.txt", data, fmt="%.6f")

    # Create weathered polymer samples
    weathered_dir = Path("datasets/demo_dataset/weathered")
    weathered_dir.mkdir(parents=True, exist_ok=True)

    print("Generating weathered polymer samples...")
    for i in range(20):
        # Weathered polymers - lower intensity, broader peaks, additional oxidation peaks
        weathered_peaks = [
            (
                800 + np.random.normal(0, 30),
                0.2 + np.random.normal(0, 0.04),
                45 + np.random.normal(0, 10),
            ),
            (
                1200 + np.random.normal(0, 40),
                0.3 + np.random.normal(0, 0.06),
                55 + np.random.normal(0, 12),
            ),
            (
                1600 + np.random.normal(0, 35),
                0.15 + np.random.normal(0, 0.03),
                50 + np.random.normal(0, 8),
            ),
            (
                1720 + np.random.normal(0, 20),
                0.25 + np.random.normal(0, 0.04),
                40 + np.random.normal(0, 7),
            ),  # Oxidation peak
            (
                2900 + np.random.normal(0, 50),
                0.4 + np.random.normal(0, 0.08),
                80 + np.random.normal(0, 15),
            ),
        ]

        spectrum = generate_synthetic_spectrum(
            wavenumbers,
            base_intensity=0.25 + np.random.normal(0, 0.04),
            noise_level=0.03,
            peaks=weathered_peaks,
        )

        # Save as two-column format
        data = np.column_stack([wavenumbers, spectrum])
        np.savetxt(weathered_dir / f"weathered_sample_{i:02d}.txt", data, fmt="%.6f")

    print(f"✅ Demo dataset created:")
    print(f"   Stable samples: {len(list(stable_dir.glob('*.txt')))}")
    print(f"   Weathered samples: {len(list(weathered_dir.glob('*.txt')))}")
    print(f"   Location: datasets/demo_dataset/")


if __name__ == "__main__":
    create_demo_datasets()