Spaces:
Sleeping
Sleeping
File size: 21,709 Bytes
723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 c8f5637 723ebe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
"""
AI-Driven Polymer Aging Prediction and Classification
Hugging Face Spaces Deployment
This is an adapted version of the Streamlit app optimized for Hugging Face Spaces deployment.
It maintains all the functionality of the original app while being self-contained and cloud-ready.
"""
import os
import sys
from pathlib import Path
# Ensure 'utils' directory is in the Python path
utils_path = Path(__file__).resolve().parent / "utils"
if utils_path.is_dir() and str(utils_path) not in sys.path:
sys.path.append(str(utils_path))
import streamlit as st
import torch
import numpy as np
import matplotlib
matplotlib.use("Agg") # ensure headless rendering in Spaces
import matplotlib.pyplot as plt
from PIL import Image
import io
from pathlib import Path
import time
import gc
from io import StringIO
# Import local modules
from models.figure2_cnn import Figure2CNN
from models.resnet_cnn import ResNet1D
# Prefer canonical script; fallback to local utils for HF hard-copy scenario
try:
from scripts.preprocess_dataset import resample_spectrum
except ImportError:
from utils.preprocessing import resample_spectrum
# Configuration
st.set_page_config(
page_title="ML Polymer Classification",
page_icon="π¬",
layout="wide",
initial_sidebar_state="expanded"
)
# Constants
TARGET_LEN = 500
SAMPLE_DATA_DIR = "sample_data"
# Prefer env var, else 'model_weights' if present; else canonical 'outputs'
MODEL_WEIGHTS_DIR = (
os.getenv("WEIGHTS_DIR")
or ("model_weights" if os.path.isdir("model_weights") else "outputs")
)
# Model configuration
MODEL_CONFIG = {
"Figure2CNN (Baseline)": {
"class": Figure2CNN,
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
"emoji": "π¬",
"description": "Baseline CNN with standard filters",
"accuracy": "94.80%",
"f1": "94.30%"
},
"ResNet1D (Advanced)": {
"class": ResNet1D,
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
"emoji": "π§ ",
"description": "Residual CNN with deeper feature learning",
"accuracy": "96.20%",
"f1": "95.90%"
}
}
# Label mapping
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
# Utility functions
def label_file(filename: str) -> int:
"""Extract label from filename based on naming convention"""
name = Path(filename).name.lower()
if name.startswith("sta"):
return 0
elif name.startswith("wea"):
return 1
else:
# Return None for unknown patterns instead of raising error
return -1 # Default value for unknown patterns
@st.cache_resource
def load_model(model_name):
"""Load and cache the specified model with error handling"""
try:
config = MODEL_CONFIG[model_name]
model_class = config["class"]
model_path = config["path"]
# Initialize model
model = model_class(input_length=TARGET_LEN)
# Check if model file exists
if not os.path.exists(model_path):
st.warning(f"β οΈ Model weights not found: {model_path}")
st.info("Using randomly initialized model for demonstration purposes.")
return model, False
# Load weights
state_dict = torch.load(model_path, map_location="cpu")
model.load_state_dict(state_dict, strict=False)
if model is not None:
model.eval()
else:
raise ValueError("Model is not loaded. Please check the model configuration or weights.")
return model, True
except Exception as e:
st.error(f"β Error loading model {model_name}: {str(e)}")
return None, False
def cleanup_memory():
"""Clean up memory after inference"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
@st.cache_data
def get_sample_files():
"""Get list of sample files if available"""
sample_dir = Path(SAMPLE_DATA_DIR)
if sample_dir.exists():
return sorted(list(sample_dir.glob("*.txt")))
return []
def parse_spectrum_data(raw_text):
"""Parse spectrum data from text with robust error handling"""
x_vals, y_vals = [], []
for line in raw_text.splitlines():
line = line.strip()
if not line or line.startswith('#'): # Skip empty lines and comments
continue
try:
# Handle different separators
parts = line.replace(",", " ").split()
numbers = [p for p in parts if p.replace('.', '', 1).replace('-', '', 1).replace('+', '', 1).isdigit()]
if len(numbers) >= 2:
x, y = float(numbers[0]), float(numbers[1])
x_vals.append(x)
y_vals.append(y)
except ValueError:
# Skip problematic lines but don't fail completely
continue
if len(x_vals) < 10: # Minimum reasonable spectrum length
raise ValueError(f"Insufficient data points: {len(x_vals)}. Need at least 10 points.")
return np.array(x_vals), np.array(y_vals)
def create_spectrum_plot(x_raw, y_raw, y_resampled):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(12, 4), dpi=100)
# Raw spectrum
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# Resampled spectrum
x_resampled = np.linspace(min(x_raw), max(x_raw), TARGET_LEN)
ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1)
ax[1].set_title(f"Resampled ({TARGET_LEN} points)")
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
plt.tight_layout()
# Convert to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "π’"
elif logit_margin > 250:
return "HIGH", "π‘"
elif logit_margin > 100:
return "MODERATE", "π "
else:
return "LOW", "π΄"
# Initialize session state
def init_session_state():
"""Initialize session state variables"""
defaults = {
'status_message': "Ready to analyze polymer spectra π¬",
'status_type': "info",
'uploaded_file': None, # legacy; kept for compatibility
'input_text': None, # βββ NEW: canonical store for spectrum text
'filename': None,
'inference_run_once': False,
'x_raw': None,
'y_raw': None,
'y_resampled': None
}
for key, default_value in defaults.items():
if key not in st.session_state:
st.session_state[key] = default_value
# Main app
def main():
init_session_state()
# Header
st.title("π¬ AI-Driven Polymer Classification")
st.markdown("**Predict polymer degradation states using Raman spectroscopy and deep learning**")
# Sidebar
with st.sidebar:
st.header("βΉοΈ About This App")
st.markdown("""
**AIRE 2025 Internship Project**
AI-Driven Polymer Aging Prediction and Classification
π― **Purpose**: Classify polymer degradation using AI
π **Input**: Raman spectroscopy data
π§ **Models**: CNN architectures for binary classification
**Team**:
- **Mentor**: Dr. Sanmukh Kuppannagari
- **Mentor**: Dr. Metin Karailyan
- **Author**: Jaser Hasan
π [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
""")
st.markdown("---")
# Model selection
st.subheader("π§ Model Selection")
model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
selected_label = st.selectbox("Choose AI model:", model_labels)
model_choice = selected_label.split(" ", 1)[1]
# Model info
config = MODEL_CONFIG[model_choice]
st.markdown(f"""
**π {config['emoji']} Model Details**
*{config['description']}*
- **Accuracy**: `{config['accuracy']}`
- **F1 Score**: `{config['f1']}`
""")
# Main content area
col1, col2 = st.columns([1, 1.5], gap="large")
with col1:
st.subheader("π Data Input")
# File upload tabs
tab1, tab2 = st.tabs(["π€ Upload File", "π§ͺ Sample Data"])
uploaded_file = None
with tab1:
uploaded_file = st.file_uploader(
"Upload Raman spectrum (.txt)",
type="txt",
help="Upload a text file with wavenumber and intensity columns",
key="upload_text"
)
if uploaded_file:
# Read now and persist raw text; avoid holding open buffers in session_state
raw = uploaded_file.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
st.session_state['input_text'] = text
st.session_state['filename'] = uploaded_file.name
st.session_state['uploaded_file'] = None # avoid stale buffers
st.success(f"β
Loaded: {uploaded_file.name}")
with tab2:
sample_files = get_sample_files()
if sample_files:
sample_options = ["-- Select Sample --"] + [f.name for f in sample_files]
selected_sample = st.selectbox("Choose sample spectrum:", sample_options, key="sample_select")
if selected_sample != "-- Select Sample --":
selected_path = Path(SAMPLE_DATA_DIR) / selected_sample
try:
with open(selected_path, "r", encoding="utf-8") as f:
file_contents = f.read()
# Persist raw text + name; no open file handles in session_state
st.session_state['input_text'] = file_contents
st.session_state['filename'] = selected_sample
st.session_state['uploaded_file'] = None
st.success(f"β
Loaded sample: {selected_sample}")
except (FileNotFoundError, IOError) as e:
st.error(f"Error loading sample: {e}")
else:
st.info("No sample data available")
# Update session state
# If we captured text via either tab, reflect readiness in status
if st.session_state.get('input_text'):
st.session_state['status_message'] = f"π File '{st.session_state.get('filename', '(unnamed)')}' ready for analysis"
st.session_state['status_type'] = "success"
# Status display
st.subheader("π¦ Status")
status_msg = st.session_state.get("status_message", "Ready")
status_type = st.session_state.get("status_type", "info")
if status_type == "success":
st.success(status_msg)
elif status_type == "error":
st.error(status_msg)
else:
st.info(status_msg)
# Load model
model, model_loaded = load_model(model_choice)
# Ready if we have cached text and a model instance
inference_ready = bool(st.session_state.get('input_text')) and (model is not None)
if not model_loaded:
st.warning("β οΈ Model weights not available - using demo mode")
if st.button("βΆοΈ Run Analysis", disabled=not inference_ready, type="primary", key="run_btn"):
if inference_ready:
try:
# Use persisted text + filename (works for uploads and samples)
raw_text = st.session_state.get('input_text')
filename = st.session_state.get('filename') or "unknown.txt"
if not raw_text:
raise ValueError("No input text available. Please upload or select a sample.")
# Parse spectrum
with st.spinner("Parsing spectrum data..."):
x_raw, y_raw = parse_spectrum_data(raw_text)
# Resample spectrum
with st.spinner("Resampling spectrum..."):
y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
# Store in session state
st.session_state['x_raw'] = x_raw
st.session_state['y_raw'] = y_raw
st.session_state['y_resampled'] = y_resampled
st.session_state['inference_run_once'] = True
st.session_state['status_message'] = f"π Analysis completed for: {filename}"
st.session_state['status_type'] = "success"
st.rerun()
except Exception as e:
st.error(f"β Analysis failed: {str(e)}")
st.session_state['status_message'] = f"β Error: {str(e)}"
st.session_state['status_type'] = "error"
# Results column
with col2:
if st.session_state.get("inference_run_once", False):
st.subheader("π Analysis Results")
# Get data from session state
x_raw = st.session_state.get('x_raw')
y_raw = st.session_state.get('y_raw')
y_resampled = st.session_state.get('y_resampled')
filename = st.session_state.get('filename', 'Unknown')
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# Create and display plot
try:
spectrum_plot = create_spectrum_plot(x_raw, y_raw, y_resampled)
st.image(spectrum_plot, caption="Spectrum Preprocessing Results", use_container_width=True)
except Exception as e:
st.warning(f"Could not generate plot: {e}")
# Run inference
try:
with st.spinner("Running AI inference..."):
start_time = time.time()
# Prepare input tensor
input_tensor = torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
# Run inference
model.eval()
with torch.no_grad():
if model is None:
raise ValueError("Model is not loaded. Please check the model configuration or weights.")
logits = model(input_tensor)
prediction = torch.argmax(logits, dim=1).item()
logits_list = logits.detach().numpy().tolist()[0]
inference_time = time.time() - start_time
# Clean up memory
cleanup_memory()
# Get ground truth if available
true_label_idx = label_file(filename)
true_label_str = LABEL_MAP.get(true_label_idx, "Unknown") if true_label_idx is not None else "Unknown"
# Get prediction
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
# Calculate confidence metrics
logit_margin = abs(logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
confidence_desc, confidence_emoji = get_confidence_description(logit_margin)
# Display results
st.markdown("### π― Prediction Results")
# Main prediction
st.markdown(f"""
**π¬ Sample**: `{filename}`
**π§ Model**: `{model_choice}`
**β±οΈ Processing Time**: `{inference_time:.2f}s`
""")
# Prediction box
if predicted_class == "Stable (Unweathered)":
st.success(f"π’ **Prediction**: {predicted_class}")
else:
st.warning(f"π‘ **Prediction**: {predicted_class}")
# Confidence
st.markdown(f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
# Ground truth comparison
if true_label_idx is not None:
if predicted_class == true_label_str:
st.success(f"β
**Ground Truth**: {true_label_str} - **Correct!**")
else:
st.error(f"β **Ground Truth**: {true_label_str} - **Incorrect**")
else:
st.info("βΉοΈ **Ground Truth**: Unknown (filename doesn't follow naming convention)")
# Detailed results tabs
tab1, tab2, tab3 = st.tabs(["π Details", "π¬ Technical", "π Explanation"])
with tab1:
st.markdown("**Model Output (Logits)**")
for i, score in enumerate(logits_list):
label = LABEL_MAP.get(i, f"Class {i}")
st.metric(label, f"{score:.2f}")
st.markdown("**Spectrum Statistics**")
st.json({
"Original Length": len(x_raw) if x_raw is not None else 0,
"Resampled Length": TARGET_LEN,
"Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ" if x_raw is not None else "N/A",
"Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}" if y_raw is not None else "N/A",
"Model Confidence": confidence_desc
})
with tab2:
st.markdown("**Technical Information**")
st.json({
"Model Architecture": model_choice,
"Input Shape": list(input_tensor.shape),
"Output Shape": list(logits.shape),
"Inference Time": f"{inference_time:.3f}s",
"Device": "CPU",
"Model Loaded": model_loaded
})
if not model_loaded:
st.warning("β οΈ Demo mode: Using randomly initialized weights")
with tab3:
st.markdown("""
**π Analysis Process**
1. **Data Upload**: Raman spectrum file loaded
2. **Preprocessing**: Data parsed and resampled to 500 points
3. **AI Inference**: CNN model analyzes spectral patterns
4. **Classification**: Binary prediction with confidence scores
**π§ Model Interpretation**
The AI model identifies spectral features indicative of:
- **Stable polymers**: Well-preserved molecular structure
- **Weathered polymers**: Degraded/oxidized molecular bonds
**π― Applications**
- Material longevity assessment
- Recycling viability evaluation
- Quality control in manufacturing
- Environmental impact studies
""")
except Exception as e:
st.error(f"β Inference failed: {str(e)}")
else:
st.error("β Missing spectrum data. Please upload a file and run analysis.")
else:
# Welcome message
st.markdown("""
### π Welcome to AI Polymer Classification
**Get started by:**
1. π§ Select an AI model in the sidebar
2. π Upload a Raman spectrum file or choose a sample
3. βΆοΈ Click "Run Analysis" to get predictions
**Supported formats:**
- Text files (.txt) with wavenumber and intensity columns
- Space or comma-separated values
- Any length (automatically resampled to 500 points)
**Example applications:**
- π¬ Research on polymer degradation
- β»οΈ Recycling feasibility assessment
- π± Sustainability impact studies
- π Quality control in manufacturing
""")
# Run the application
main()
|