Spaces:
Sleeping
Sleeping
File size: 74,682 Bytes
a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd fe030dd a003091 328e6fd a003091 fe030dd 81ec5ec fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd 7bc29cd fe030dd 7bc29cd fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 fe030dd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 7bc29cd a003091 81ec5ec a003091 7bc29cd a003091 81ec5ec a003091 7bc29cd a003091 fe030dd a003091 7bc29cd a003091 81ec5ec a003091 fe030dd a003091 fe030dd a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 81ec5ec a003091 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 |
import os
import torch
import streamlit as st
import hashlib
import io
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from typing import Union
import uuid
import time
from config import TARGET_LEN, LABEL_MAP, MODEL_WEIGHTS_DIR
from models.registry import choices, get_model_info
from modules.callbacks import (
on_model_change,
on_input_mode_change,
on_sample_change,
reset_results,
reset_ephemeral_state,
log_message,
)
from core_logic import get_sample_files, load_model, run_inference, label_file
from utils.results_manager import ResultsManager
from utils.multifile import process_multiple_files, parse_spectrum_data
from utils.preprocessing import (
validate_spectrum_modality,
preprocess_spectrum,
)
from utils.confidence import calculate_softmax_confidence
def load_css(file_path):
with open(file_path, encoding="utf-8") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
@st.cache_data
def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None):
"""Create spectrum visualization plot"""
fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100)
# Raw spectrum
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
ax[0].set_title("Raw Input Spectrum")
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[0].set_ylabel("Intensity")
ax[0].grid(True, alpha=0.3)
ax[0].legend()
# Resampled spectrum
ax[1].plot(
x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1
)
ax[1].set_title(f"Resampled ({len(y_resampled)} points)")
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
ax[1].set_ylabel("Intensity")
ax[1].grid(True, alpha=0.3)
ax[1].legend()
fig.tight_layout()
# Convert to image
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
buf.seek(0)
plt.close(fig) # Prevent memory leaks
return Image.open(buf)
from typing import Optional
def render_kv_grid(d: Optional[dict] = None, ncols: int = 2):
if d is None:
d = {}
if not d:
return
items = list(d.items())
cols = st.columns(ncols)
for i, (k, v) in enumerate(items):
with cols[i % ncols]:
st.caption(f"**{k}:** {v}")
def render_model_meta(model_choice: str):
info = get_model_info(model_choice)
emoji = info.get("emoji", "")
desc = info.get("description", "").strip()
acc = info.get("performance", {}).get("accuracy", "-")
f1 = info.get("performance", {}).get("f1_score", "-")
st.caption(f"{emoji} **Model Snapshot** - {model_choice}")
cols = st.columns(2)
with cols[0]:
st.metric("Accuracy", acc)
with cols[1]:
st.metric("F1 Score", f1)
if desc:
st.caption(desc)
def get_confidence_description(logit_margin):
"""Get human-readable confidence description"""
if logit_margin > 1000:
return "VERY HIGH", "π’"
elif logit_margin > 250:
return "HIGH", "π‘"
elif logit_margin > 100:
return "MODERATE", "π "
else:
return "LOW", "π΄"
def render_sidebar():
with st.sidebar:
# Header
st.header("AI-Driven Polymer Classification")
st.caption(
"Analyze and classify polymer degradation with a suite of explainable AI models for Raman & FTIR spectroscopy. β v0.02"
)
# Model selection
st.markdown("##### AI Model Selection")
model_emojis = {
"figure2": "π",
"resnet": "π§ ",
"resnet18vision": "ποΈ",
"enhanced_cnn": "β¨",
"efficient_cnn": "β‘",
"hybrid_net": "π§¬",
}
available_models = choices()
model_labels = [
f"{model_emojis.get(name, 'π€')} {name}" for name in available_models
]
selected_label = st.selectbox(
"Choose AI Model",
model_labels,
key="model_select",
on_change=on_model_change,
width="stretch",
)
model_choice = selected_label.split(" ", 1)[1]
# Compact metadata directly under dropdown
render_model_meta(model_choice)
# Collapsed info to reduce clutter
with st.expander("About This App", icon=":material/info:", expanded=False):
st.markdown(
"""
**AI-Driven Polymer Analysis Platform**
**Purpose**: Classify, analyze, and understand polymer degradation using explainable AI.
**Input**: Raman & FTIR spectra in `.txt`, `.csv`, or `.json` formats.
**Features**:
- Single & Batch Spectrum Analysis
- Multi-Model Performance Comparison
- Interactive Model Training Hub
- Explainable AI (XAI) with feature importance
- Modality-Aware Preprocessing
**Links**
[HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)
[GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
**Contributors**
- Dr. Sanmukh Kuppannagari (Mentor)
- Dr. Metin Karailyan (Mentor)
- Jaser Hasan (Author)
**Citation (Baseline Model)**
Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718.
https://doi.org/10.1016/j.resconrec.2022.106718
"""
)
def render_input_column():
st.markdown("##### Data Input")
# Modality Selection - Moved from sidebar to be the primary context setter
st.markdown("###### 1. Choose Spectroscopy Modality")
modality = st.selectbox(
"Choose Modality",
["raman", "ftir"],
index=0,
key="modality_select",
format_func=lambda x: f"{'Raman' if x == 'raman' else 'FTIR'}",
help="Select the type of spectroscopy data you are analyzing. This choice affects preprocessing steps.",
width=325,
)
mode = st.radio(
"Input mode",
["Upload File", "Batch Upload", "Sample Data"],
key="input_mode",
horizontal=True,
on_change=on_input_mode_change,
)
# == Input Mode Logic ==
if mode == "Upload File":
upload_key = st.session_state["current_upload_key"]
up = st.file_uploader(
"Upload spectrum file (.txt, .csv, .json)",
type=["txt", "csv", "json"],
help="Upload spectroscopy data: TXT (2-column), CSV (with headers), or JSON format",
key=upload_key, # β versioned key
)
# Process change immediately
if up is not None:
raw = up.read()
text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
# only reparse if its a different file|source
if (
st.session_state.get("filename") != getattr(up, "name", None)
or st.session_state.get("input_source") != "upload"
):
st.session_state["input_text"] = text
st.session_state["filename"] = getattr(up, "name", None)
st.session_state["input_source"] = "upload"
# Ensure single file mode
st.session_state["batch_mode"] = False
st.session_state["status_message"] = (
f"File '{st.session_state['filename']}' ready for analysis"
)
st.session_state["status_type"] = "success"
reset_results("New file uploaded")
# Batch Upload tab
elif mode == "Batch Upload":
st.session_state["batch_mode"] = True
# Use a versioned key to ensure the file uploader resets properly.
batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}"
uploaded_files = st.file_uploader(
"Upload multiple spectrum files (.txt, .csv, .json)",
type=["txt", "csv", "json"],
accept_multiple_files=True,
help="Upload spectroscopy files in TXT, CSV, or JSON format.",
key=batch_upload_key,
)
if uploaded_files:
# Use a dictionary to keep only unique files based on name and size
unique_files = {(file.name, file.size): file for file in uploaded_files}
unique_file_list = list(unique_files.values())
num_uploaded = len(uploaded_files)
num_unique = len(unique_file_list)
# Optionally, inform the user that duplicates were removed
if num_uploaded > num_unique:
st.info(f"{num_uploaded - num_unique} duplicate file(s) were removed.")
# Use the unique list
st.session_state["batch_files"] = unique_file_list
st.session_state["status_message"] = (
f"{num_unique} ready for batch analysis"
)
st.session_state["status_type"] = "success"
else:
st.session_state["batch_files"] = []
# This check prevents resetting the status if files are already staged
if not st.session_state.get("batch_files"):
st.session_state["status_message"] = (
"No files selected for batch processing"
)
st.session_state["status_type"] = "info"
# Sample tab
elif mode == "Sample Data":
st.session_state["batch_mode"] = False
sample_files = get_sample_files()
if sample_files:
options = ["-- Select Sample --"] + [p.name for p in sample_files]
sel = st.selectbox(
"Choose sample spectrum:",
options,
key="sample_select",
on_change=on_sample_change,
width=350,
)
if sel != "-- Select Sample --":
st.session_state["status_message"] = (
f"π Sample '{sel}' ready for analysis"
)
st.session_state["status_type"] = "success"
else:
st.info("No sample data available")
# == Status box (displays the message) ==
msg = st.session_state.get("status_message", "Ready")
typ = st.session_state.get("status_type", "info")
if typ == "success":
st.success(msg)
elif typ == "error":
st.error(msg)
else:
st.info(msg)
# Safely get model choice from session state
model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1]
model = load_model(model_choice)
# Determine if the app is ready for inference
is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get(
"batch_files"
)
is_single_ready = not st.session_state.get(
"batch_mode", False
) and st.session_state.get("input_text")
inference_ready = (is_batch_ready or is_single_ready) and model is not None
# Store for other modules to access
st.session_state["inference_ready"] = inference_ready
# --- Action Buttons ---
# Using columns for a side-by-side layout
col1, col2 = st.columns(2)
with col1:
submitted = st.button(
"Run Analysis",
type="primary",
disabled=not inference_ready,
use_container_width=True,
)
with col2:
st.button("Reset All", on_click=reset_ephemeral_state, use_container_width=True)
# Handle form submission
if submitted:
st.session_state["run_uuid"] = uuid.uuid4().hex[:8]
if st.session_state.get("batch_mode"):
batch_files = st.session_state.get("batch_files", [])
with st.spinner(f"Processing {len(batch_files)} files ..."):
st.session_state["batch_results"] = process_multiple_files(
uploaded_files=batch_files,
model_choice=model_choice,
run_inference_func=run_inference,
label_file_func=label_file,
modality=st.session_state.get("modality_select", "raman"),
)
else:
try:
x_raw, y_raw = parse_spectrum_data(
st.session_state["input_text"],
filename=st.session_state.get("filename", "unknown"),
)
# QC Summary
st.session_state["qc_summary"] = {
"n_points": len(x_raw),
"x_min": f"{np.min(x_raw):.1f}",
"x_max": f"{np.max(x_raw):.1f}",
"monotonic_x": bool(np.all(np.diff(x_raw) > 0)),
"nan_free": not (
np.any(np.isnan(x_raw)) or np.any(np.isnan(y_raw))
),
"variance_proxy": f"{np.var(y_raw):.2e}",
}
# Preprocessing parameters
preproc_params = {
"target_len": TARGET_LEN,
"modality": st.session_state.get("modality_select", "raman"),
"do_baseline": True,
"do_smooth": True,
"do_normalize": True,
}
# Validate that spectrum matches selected modality
selected_modality = st.session_state.get("modality_select", "raman")
is_valid, issues = validate_spectrum_modality(
x_raw, y_raw, selected_modality
)
if not is_valid:
st.warning("β οΈ **Spectrum-Modality Mismatch Detected**")
for issue in issues:
st.warning(f"β’ {issue}")
# Ask user if they want to continue
st.info(
"π‘ **Suggestion**: Check if the correct modality is selected in the sidebar, or verify your data file."
)
if st.button("β οΈ Continue Anyway", key="continue_with_mismatch"):
st.warning(
"Proceeding with potentially mismatched data. Results may be unreliable."
)
else:
st.stop() # Stop processing until user confirms
x_resampled, y_resampled = preprocess_spectrum(
x_raw, y_raw, **preproc_params
)
st.session_state["preproc_params"] = preproc_params
st.session_state.update(
{
"x_raw": x_raw,
"y_raw": y_raw,
"x_resampled": x_resampled,
"y_resampled": y_resampled,
"inference_run_once": True,
}
)
except (ValueError, TypeError) as e:
st.error(f"Error processing spectrum data: {e}")
def render_results_column():
# Get the current mode and check for batch results
is_batch_mode = st.session_state.get("batch_mode", False)
has_batch_results = "batch_results" in st.session_state
if is_batch_mode and has_batch_results:
# THEN render the main interactive dashboard from ResultsManager
ResultsManager.display_results_table()
elif st.session_state.get("inference_run_once", False) and not is_batch_mode:
st.markdown("##### Analysis Results")
# Get data from session state
x_raw = st.session_state.get("x_raw")
y_raw = st.session_state.get("y_raw")
x_resampled = st.session_state.get("x_resampled") # β NEW
y_resampled = st.session_state.get("y_resampled")
filename = st.session_state.get("filename", "Unknown")
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
# Run inference
if y_resampled is None:
raise ValueError(
"y_resampled is None. Ensure spectrum data is properly resampled before proceeding."
)
cache_key = hashlib.md5(
f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode()
).hexdigest()
# MODIFIED: Pass modality to run_inference
prediction, logits_list, probs, inference_time, logits = run_inference(
y_resampled,
(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
),
modality=st.session_state.get("modality_select", "raman"),
cache_key=cache_key,
)
if prediction is None:
st.error(
"β Inference failed: Model not loaded. Please check that weights are available."
)
st.stop() # prevents the rest of the code in this block from executing
# Store results in session state for the Details tab
st.session_state["prediction"] = prediction
st.session_state["probs"] = probs
st.session_state["inference_time"] = inference_time
log_message(
f"Inference completed in {inference_time:.2f}s, prediction: {prediction}"
)
# Get ground truth
true_label_idx = label_file(filename)
true_label_str = (
LABEL_MAP.get(true_label_idx, "Unknown")
if true_label_idx is not None
else "Unknown"
)
# Get prediction
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
# Enhanced confidence calculation
if logits is not None:
# Use new softmax-based confidence
probs_np, max_confidence, confidence_level, confidence_emoji = (
calculate_softmax_confidence(logits)
)
confidence_desc = confidence_level
else:
# Fallback to legacy method
logit_margin = abs(
(logits_list[0] - logits_list[1])
if logits_list is not None and len(logits_list) >= 2
else 0
)
confidence_desc, confidence_emoji = get_confidence_description(
logit_margin
)
max_confidence = logit_margin / 10.0 # Normalize for display
probs_np = np.array([])
# Store result in results manager for single file too
ResultsManager.add_results(
filename=filename,
model_name=(
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else "Unknown"
),
prediction=int(prediction),
predicted_class=predicted_class,
confidence=max_confidence,
logits=logits_list if logits_list else [],
ground_truth=true_label_idx if true_label_idx >= 0 else None,
processing_time=inference_time if inference_time is not None else 0.0,
metadata={
"confidence_level": confidence_desc,
"confidence_emoji": confidence_emoji,
},
)
# Precompute Stats
model_choice = (
st.session_state.get("model_select", "").split(" ", 1)[1]
if "model_select" in st.session_state
else None
)
if not model_choice:
st.error(
"β οΈ Model choice is not defined. Please select a model from the sidebar."
)
st.stop()
model_info = get_model_info(model_choice)
st.session_state["model_info"] = model_info
model_path = os.path.join(MODEL_WEIGHTS_DIR, f"{model_choice}_model.pth")
mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None
file_hash = (
hashlib.md5(open(model_path, "rb").read()).hexdigest()
if os.path.exists(model_path)
else "N/A"
)
start_render = time.time()
active_tab = st.selectbox(
"View Results",
["Details", "Technical", "Explanation"],
key="active_tab", # reuse the key you were managing manually
)
if active_tab == "Details":
# Use a dynamic and informative title for the expander
with st.expander(f"Results for {filename}", expanded=True):
# ...inside the Details tab, after metrics...
import json, math, uuid
st.subheader("Probability Breakdown")
def _entropy(ps):
ps = [max(min(float(p), 1.0), 1e-12) for p in ps]
return -sum(p * math.log(p) for p in ps)
def _badge(text, kind="info"):
# This function now relies on CSS classes defined in style.css
# for better separation of concerns and maintainability.
st.markdown(
f"<span class='badge badge-{kind}'>{text}</span>",
unsafe_allow_html=True,
)
def _render_prob_row(label: str, prob: float, is_pred: bool):
c1, c2, c3 = st.columns([2, 7, 3])
with c1:
st.write(label)
with c2:
st.progress(min(max(prob, 0.0), 1.0))
with c3:
suffix = " \u2190 Predicted" if is_pred else ""
st.write(f"{prob:.1%}{suffix}")
probs = st.session_state.get("probs")
prediction = st.session_state.get("prediction")
inference_time = float(st.session_state.get("inference_time", 0.0))
if probs is None or len(probs) != 2:
st.error(
"β Probability values are missing or invalid. Check the inference process."
)
stable_prob, weathered_prob = 0.0, 0.0
else:
stable_prob, weathered_prob = float(probs[0]), float(probs[1])
is_stable_predicted = (
(int(prediction) == 0)
if prediction is not None
else (stable_prob >= weathered_prob)
)
is_weathered_predicted = (
(int(prediction) == 1)
if prediction is not None
else (weathered_prob > stable_prob)
)
margin = abs(stable_prob - weathered_prob)
entropy = _entropy([stable_prob, weathered_prob])
thresh = float(st.session_state.get("decision_threshold", 0.5))
cal = st.session_state.get("calibration", {}) or {}
cal_enabled = bool(cal.get("enabled", False))
ece = cal.get("ece", None)
ABSTAIN_TAU = 0.10
OOD_MAX_SOFT = 0.60
max_softmax = max(stable_prob, weathered_prob)
colA, colB, colC, colD = st.columns([3, 3, 3, 3])
with colA:
st.metric(
"Predicted",
"Stable" if is_stable_predicted else "Weathered",
)
with colB:
st.metric("Decision Margin", f"{margin:.2f}")
with colC:
st.metric("Entropy", f"{entropy:.3f}")
with colD:
st.metric("Threshold", f"{thresh:.2f}")
row = st.columns([3, 3, 6])
with row[0]:
if margin < ABSTAIN_TAU:
_badge("Low margin β consider abstain / re-measure", "warn")
with row[1]:
if max_softmax < OOD_MAX_SOFT:
_badge("Low confidence β possible OOD", "bad")
with row[2]:
if cal_enabled:
_badge(
(
f"Calibrated (ECE={ece:.2%})"
if isinstance(ece, (int, float))
else "Calibrated"
),
"good",
)
else:
_badge(
"Uncalibrated β probabilities may be miscalibrated",
"info",
)
st.write("")
_render_prob_row(
"Stable (Unweathered)", stable_prob, is_stable_predicted
)
_render_prob_row(
"Weathered (Degraded)", weathered_prob, is_weathered_predicted
)
qc = st.session_state.get("qc_summary", {}) or {}
pp = st.session_state.get("preproc_params", {}) or {}
model_info = st.session_state.get("model_info", {}) or {}
run_info = {
"model": model_choice,
"inference_time_s": inference_time,
"run_uuid": st.session_state.get("run_uuid", ""),
"app_commit": st.session_state.get("app_commit", "unknown"),
}
with st.expander("Input QC"):
st.write(
{
"n_points": qc.get("n_points", "N/A"),
"x_min_cm-1": qc.get("x_min", "N/A"),
"x_max_cm-1": qc.get("x_max", "N/A"),
"monotonic_x": qc.get("monotonic_x", "N/A"),
"nan_free": qc.get("nan_free", "N/A"),
"variance_proxy": qc.get("variance_proxy", "N/A"),
}
)
with st.expander("Preprocessing (applied)"):
st.write(pp)
with st.expander("Model & Run"):
st.write(
{
"model_name": model_info.get("name", model_choice),
"version": model_info.get("version", "n/a"),
"weights_mtime": model_info.get("weights_mtime", "n/a"),
"cv_accuracy": model_info.get("cv_accuracy", "n/a"),
"class_priors": model_info.get("class_priors", "n/a"),
**run_info,
}
)
export_payload = {
"prediction": "stable" if is_stable_predicted else "weathered",
"probs": {"stable": stable_prob, "weathered": weathered_prob},
"margin": margin,
"entropy": entropy,
"threshold": thresh,
"calibration": {
"enabled": cal_enabled,
"ece": ece,
"method": cal.get("method"),
"T": cal.get("T"),
},
"qc": qc,
"preprocessing": pp,
"model_info": model_info,
"run_info": run_info,
}
fname = f"result_{run_info['run_uuid'] or uuid.uuid4().hex}.json"
st.download_button(
"Download result JSON",
json.dumps(export_payload, indent=2),
file_name=fname,
mime="application/json",
)
# METADATA FOOTER
st.caption(
f"Analyzed with **{run_info['model']}** in **{inference_time:.2f}s**."
)
elif active_tab == "Technical":
with st.container():
st.markdown("Technical Diagnostics")
# Model performance metrics
with st.container(border=True):
st.markdown("##### **Model Performance**")
tech_col1, tech_col2 = st.columns(2)
with tech_col1:
st.metric("Inference Time", f"{inference_time:.3f}s")
st.metric(
"Input Length",
f"{len(x_raw) if x_raw is not None else 0} points",
)
st.metric("Resampled Length", f"{TARGET_LEN} points")
with tech_col2:
st.metric(
"Model Loaded",
(
"β
Yes"
if st.session_state.get("model_loaded", False)
else "β No"
),
)
st.metric("Device", "CPU")
st.metric("Confidence Score", f"{max_confidence:.3f}")
# Raw logits display
with st.container(border=True):
st.markdown("##### **Raw Model Outputs (Logits)**")
logits_df = {
"Class": (
[
LABEL_MAP.get(i, f"Class {i}")
for i in range(len(logits_list))
]
if logits_list is not None
else []
),
"Logit Value": (
[f"{score:.4f}" for score in logits_list]
if logits_list is not None
else []
),
"Probability": (
[f"{prob:.4f}" for prob in probs_np]
if logits_list is not None and len(probs_np) > 0
else []
),
}
# Display as a simple table format
for i, (cls, logit, prob) in enumerate(
zip(
logits_df["Class"],
logits_df["Logit Value"],
logits_df["Probability"],
)
):
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
if i == prediction:
st.markdown(f"**{cls}** β Predicted")
else:
st.markdown(cls)
with col2:
st.caption(f"Logit: {logit}")
with col3:
st.caption(f"Prob: {prob}")
# Spectrum statistics in organized sections
with st.container(border=True):
st.markdown("##### **Spectrum Analysis**")
spec_cols = st.columns(2)
with spec_cols[0]:
st.markdown("**Original Spectrum:**")
render_kv_grid(
{
"Length": f"{len(x_raw) if x_raw is not None else 0} points",
"Range": (
f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ"
if x_raw is not None
else "N/A"
),
"Min Intensity": (
f"{min(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
"Max Intensity": (
f"{max(y_raw):.2e}"
if y_raw is not None
else "N/A"
),
},
ncols=1,
)
with spec_cols[1]:
st.markdown("**Processed Spectrum:**")
render_kv_grid(
{
"Length": f"{TARGET_LEN} points",
"Resampling": "Linear interpolation",
"Normalization": "None",
"Input Shape": f"(1, 1, {TARGET_LEN})",
},
ncols=1,
)
# Model information
with st.container(border=True):
st.markdown("##### **Model Information**")
model_info_cols = st.columns(2)
with model_info_cols[0]:
render_kv_grid(
{
"Architecture": model_choice,
"Path": model_path,
"Weights Modified": (
time.strftime(
"%Y-%m-%d %H:%M:%S", time.localtime(mtime)
)
if mtime
else "N/A"
),
},
ncols=1,
)
with model_info_cols[1]:
if os.path.exists(model_path):
file_hash = hashlib.md5(
open(model_path, "rb").read()
).hexdigest()
render_kv_grid(
{
"Weights Hash": f"{file_hash[:16]}...",
"Output Shape": f"(1, {len(LABEL_MAP)})",
"Activation": "Softmax",
},
ncols=1,
)
# Debug logs (collapsed by default)
with st.expander("π Debug Logs", expanded=False):
log_content = "\n".join(
st.session_state.get("log_messages", [])
)
if log_content.strip():
st.code(log_content, language="text")
else:
st.caption("No debug logs available")
elif active_tab == "Explanation":
with st.container():
st.markdown("### π Methodology & Interpretation")
st.markdown("#### Analysis Pipeline")
process_steps = [
"π **Data Input**: Upload a spectrum file (`.txt`, `.csv`, `.json`) and select the spectroscopy modality (Raman or FTIR).",
"π¬ **Modality-Aware Preprocessing**: The spectrum is automatically processed with steps tailored to the selected modality, including baseline correction, smoothing, normalization, and resampling to a fixed length (500 points).",
"π§ **AI Inference**: A selected model from the registry (e.g., `Figure2CNN`, `ResNet`, `EnhancedCNN`) analyzes the processed spectrum to identify key patterns.",
"π **Classification & Confidence**: The model outputs a binary prediction (Stable vs. Weathered) along with a detailed probability breakdown and confidence score.",
"β
**Validation & Explainability**: Results are presented with technical diagnostics, and where possible, explainability metrics to interpret the model's decision.",
]
for step in process_steps:
st.markdown(f"- {step}")
st.markdown("---")
# Model interpretation
st.markdown("#### Scientific Interpretation")
interp_col1, interp_col2 = st.columns(2)
with interp_col1:
st.markdown("**Stable (Unweathered) Polymers:**")
st.info(
"""
- **Spectral Signature**: Sharp, well-defined peaks corresponding to the polymer's known vibrational modes.
- **Chemical State**: Minimal evidence of oxidation or chain scission. The polymer backbone is intact.
- **Model Behavior**: The AI identifies a strong match with the spectral fingerprint of a non-degraded reference material.
- **Implication**: Suitable for high-quality recycling applications.
"""
)
with interp_col2:
st.markdown("**Weathered (Degraded) Polymers:**")
st.warning(
"""
- **Spectral Signature**: Peak broadening, baseline shifts, and the emergence of new peaks (e.g., carbonyl group at ~1715 cmβ»ΒΉ).
- **Chemical State**: Evidence of oxidation, hydrolysis, or other degradation pathways.
- **Model Behavior**: The AI detects features that deviate significantly from the reference fingerprint, indicating chemical alteration.
- **Implication**: May require more intensive processing or be unsuitable for certain recycling streams.
"""
)
st.markdown("---")
# Applications
st.markdown("#### Research & Industrial Applications")
applications = [
" **Material Science**: Quantify degradation rates and study aging mechanisms in novel polymers.",
"β»οΈ **Circular Economy**: Automate the quality control and sorting of post-consumer plastics for recycling.",
"π± **Environmental Science**: Analyze the weathering of microplastics in various environmental conditions.",
"π **Industrial QC**: Monitor material integrity and predict product lifetime in manufacturing processes.",
"π€ **AI-Driven Discovery**: Use explainability features to generate new hypotheses about material behavior.",
]
for app in applications:
st.markdown(f"- {app}")
# Technical details
with st.expander(
"π§ Technical Architecture Details", expanded=False
):
st.markdown(
"""
**Model Architectures:**
- The app features a registry of models, including the `Figure2CNN` baseline, `ResNet` variants, and more advanced custom architectures like `EnhancedCNN` and `HybridSpectralNet`.
- Each model is trained on a comprehensive dataset of stable and weathered polymer spectra.
**Unified Training Engine:**
- A central `TrainingEngine` ensures that all models are trained and validated using a consistent, reproducible 10-fold cross-validation strategy.
- This engine can be accessed via the **CLI** (`scripts/train_model.py`) for automated experiments or the **UI** ("Model Training Hub") for interactive use.
**Explainability & Transparency (XAI):**
- **Feature Importance**: The system is designed to incorporate SHAP and gradient-based methods to highlight which spectral regions most influence a prediction.
- **Uncertainty Quantification**: Advanced models can estimate both model (epistemic) and data (aleatoric) uncertainty.
- **Data Provenance**: The enhanced data pipeline tracks every preprocessing step, ensuring full traceability from raw data to final prediction.
"""
)
render_time = time.time() - start_render
log_message(
f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}"
)
with st.expander("Spectrum Preprocessing Results", expanded=False):
st.markdown("---")
st.markdown("##### Spectral Analysis")
# Add some context about the preprocessing
st.markdown(
"""
**Preprocessing Overview:**
- **Original Spectrum**: Raw Raman data as uploaded
- **Resampled Spectrum**: Data interpolated to 500 points for model input
- **Purpose**: Ensures consistent input dimensions for neural network
"""
)
# Create and display plot
cache_key = hashlib.md5(
f"{(x_raw.tobytes() if x_raw is not None else b'')}"
f"{(y_raw.tobytes() if y_raw is not None else b'')}"
f"{(x_resampled.tobytes() if x_resampled is not None else b'')}"
f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode()
).hexdigest()
spectrum_plot = create_spectrum_plot(
x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key
)
st.image(
spectrum_plot,
caption="Raman Spectrum: Raw vs Processed",
use_container_width=True,
)
else:
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type(s):** `.txt`, `.csv`, `.json`
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
- **Examples:** Use the "Sample Data" input mode to see examples, or find public data on sites like Open Specy.
"""
)
else:
# Getting Started
st.markdown(
"""
##### How to Get Started
1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model.
2. **Provide Your Data:** Select one of the three input modes:
- **Upload File:** Analyze a single spectrum.
- **Batch Upload:** Process multiple files at once.
- **Sample Data:** Explore functionality with pre-loaded examples.
3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results.
---
##### Supported Data Format
- **File Type(s):** `.txt`, `.csv`, `.json`
- **Content:** Must contain two columns: `wavenumber` and `intensity`.
- **Separators:** Values can be separated by spaces or commas.
- **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements.
- **Examples:** Use the "Sample Data" input mode to see examples, or find public data on sites like Open Specy.
"""
)
def render_comparison_tab():
"""Render the multi-model comparison interface"""
import streamlit as st
import matplotlib.pyplot as plt
from models.registry import (
choices,
validate_model_list,
models_for_modality,
get_models_metadata,
)
from utils.results_manager import ResultsManager
from core_logic import get_sample_files, run_inference
from utils.preprocessing import preprocess_spectrum
from utils.multifile import parse_spectrum_data
import numpy as np
import time
st.markdown("### Multi-Model Comparison Analysis")
st.markdown(
"Compare predictions across different AI models for comprehensive analysis."
)
# Use the global modality selector from the main page
modality = st.session_state.get("modality_select", "raman")
st.info(
f"Comparing models using **{modality.upper()}** preprocessing parameters. You can change this on the 'Upload and Run' page."
)
compatible_models = models_for_modality(modality)
if not compatible_models:
st.error(f"No models available for {modality.upper()} modality")
return
# Enhanced model selection with metadata
st.markdown("##### Select Models for Comparison")
# Display model information
models_metadata = get_models_metadata()
# Create enhanced multiselect with model descriptions
model_options = []
model_descriptions = {}
for model in compatible_models:
desc = models_metadata.get(model, {}).get("description", "No description")
model_options.append(model)
model_descriptions[model] = desc
selected_models = st.multiselect(
"Choose models to compare",
model_options,
default=(model_options[:2] if len(model_options) >= 2 else model_options),
help="Select 2 or more models to compare their predictions side-by-side",
key="comparison_model_select",
)
# Display selected model information
if selected_models:
with st.expander("Selected Model Details", expanded=False):
for model in selected_models:
info = models_metadata.get(model, {})
st.markdown(f"**{model}**: {info.get('description', 'No description')}")
if "citation" in info:
st.caption(f"Citation: {info['citation']}")
if len(selected_models) < 2:
st.warning("β οΈ Please select at least 2 models for comparison.")
# Input selection for comparison
col1, col2 = st.columns([1, 1.5])
with col1:
st.markdown("###### Input Data")
# File upload for comparison
comparison_file = st.file_uploader(
"Upload spectrum for comparison",
type=["txt", "csv", "json"],
key="comparison_file_upload",
help="Upload a spectrum file to test across all selected models",
)
# Or select sample data
selected_sample = None # Initialize with a default value
sample_files = get_sample_files()
if sample_files:
sample_options = ["-- Select Sample --"] + [p.name for p in sample_files]
selected_sample = st.selectbox(
"Or choose sample data", sample_options, key="comparison_sample_select"
)
# Get modality from session state
modality = st.session_state.get("modality_select", "raman")
st.info(f"Using {modality.upper()} preprocessing parameters")
# Run comparison button
run_comparison = st.button(
"Run Multi-Model Comparison",
type="primary",
disabled=not (
comparison_file
or (sample_files and selected_sample != "-- Select Sample --")
),
)
with col2:
st.markdown("###### Comparison Results")
if run_comparison:
# Determine input source
input_text = None
filename = "unknown"
if comparison_file:
raw = comparison_file.read()
input_text = raw.decode("utf-8") if isinstance(raw, bytes) else raw
filename = comparison_file.name
elif sample_files and selected_sample != "-- Select Sample --":
sample_path = next(p for p in sample_files if p.name == selected_sample)
with open(sample_path, "r", encoding="utf-8") as f:
input_text = f.read()
filename = selected_sample
if input_text:
try:
# Parse spectrum data
x_raw, y_raw = parse_spectrum_data(
str(input_text), filename or "unknown_filename"
)
# Validate spectrum modality
is_valid, issues = validate_spectrum_modality(
x_raw, y_raw, modality
)
if not is_valid:
st.error("**Spectrum-Modality Mismatch in Comparison**")
for issue in issues:
st.error(f"β’ {issue}")
st.info(
"Please check the selected modality or verify your data file."
)
return # Exit comparison if validation fails
# Preprocess spectrum once
_, y_processed = preprocess_spectrum(
x_raw, y_raw, modality=modality, target_len=500
)
# Synchronous processing
comparison_results = {}
progress_bar = st.progress(0)
status_text = st.empty()
for i, model_name in enumerate(selected_models):
status_text.text(f"Running inference with {model_name}...")
start_time = time.time()
# Run inference
cache_key = hashlib.md5(
f"{y_processed.tobytes()}{model_name}".encode()
).hexdigest()
prediction, logits_list, probs, inference_time, logits = (
run_inference(
y_processed,
model_name,
modality=modality,
cache_key=cache_key,
)
)
processing_time = time.time() - start_time
# --- FIX FOR SYNCHRONOUS PATH: Handle silent failure ---
if prediction is None:
comparison_results[model_name] = {
"status": "failed",
"error": "Model failed to load or returned None.",
}
else:
# Map prediction to class name
class_names = ["Stable", "Weathered"]
predicted_class = (
class_names[int(prediction)]
if int(prediction) < len(class_names)
else f"Class_{prediction}"
)
confidence = (
float(np.max(probs))
if probs is not None and probs.size > 0
else 0.0
)
comparison_results[model_name] = {
"prediction": prediction,
"predicted_class": predicted_class,
"confidence": confidence,
"probs": (probs.tolist() if probs is not None else []),
"logits": (
logits_list if logits_list is not None else []
),
"processing_time": inference_time or 0.0,
"status": "success",
}
progress_bar.progress((i + 1) / len(selected_models))
status_text.text("Comparison complete!")
# Enhanced results display
if comparison_results:
# Filter successful results
successful_results = {
k: v
for k, v in comparison_results.items()
if v.get("status") == "success"
}
failed_results = {
k: v
for k, v in comparison_results.items()
if v.get("status") == "failed"
}
if failed_results:
st.error(
f"Failed models: {', '.join(failed_results.keys())}"
)
for model, result in failed_results.items():
st.error(
f"{model}: {result.get('error', 'Unknown error')}"
)
if successful_results:
try:
st.markdown("###### Model Predictions")
# Create enhanced comparison table
import pandas as pd
table_data = []
for model_name, result in successful_results.items():
row = {
"Model": model_name,
"Prediction": result["predicted_class"],
"Confidence": f"{result['confidence']:.3f}",
"Processing Time (s)": f"{result['processing_time']:.3f}",
"Agreement": (
"β"
if len(
set(
r["prediction"]
for r in successful_results.values()
)
)
== 1
else "β"
),
}
table_data.append(row)
df = pd.DataFrame(table_data)
st.dataframe(df, use_container_width=True)
# Model agreement analysis
predictions = [
r["prediction"] for r in successful_results.values()
]
agreement_rate = len(set(predictions)) == 1
if agreement_rate:
st.success("π― All models agree on the prediction!")
else:
st.warning(
"β οΈ Models disagree - review individual confidences"
)
# Enhanced visualization section
st.markdown("##### Enhanced Analysis Dashboard")
tab1, tab2, tab3 = st.tabs(
[
"Confidence Analysis",
"Performance Metrics",
"Detailed Breakdown",
]
)
with tab1:
try:
# Enhanced confidence comparison
col1, col2 = st.columns(2)
with col1:
# Bar chart of confidences
models = list(successful_results.keys())
confidences = [
successful_results[m]["confidence"]
for m in models
]
if len(confidences) == 0:
st.warning(
"No confidence data available for visualization."
)
else:
fig, ax = plt.subplots(figsize=(8, 5))
colors = plt.cm.Set3(
np.linspace(0, 1, len(models))
)
bars = ax.bar(
models,
confidences,
alpha=0.8,
color=colors,
)
# Add value labels on bars
for bar, conf in zip(bars, confidences):
height = bar.get_height()
ax.text(
bar.get_x()
+ bar.get_width() / 2.0,
height + 0.01,
f"{conf:.3f}",
ha="center",
va="bottom",
)
ax.set_ylabel("Confidence")
ax.set_title(
"Model Confidence Comparison"
)
ax.set_ylim(0, 1.1)
plt.xticks(rotation=45)
plt.tight_layout()
st.pyplot(fig)
with col2:
# Confidence distribution
st.markdown("**Confidence Statistics**")
if len(confidences) == 0:
st.warning(
"No confidence data available for statistics."
)
else:
conf_stats = {
"Mean": np.mean(confidences),
"Std Dev": np.std(confidences),
"Min": np.min(confidences),
"Max": np.max(confidences),
"Range": np.max(confidences)
- np.min(confidences),
}
for stat, value in conf_stats.items():
st.metric(stat, f"{value:.4f}")
except ValueError as e:
st.error(f"Error rendering results: {e}")
except ValueError as e:
st.error(f"Error rendering results: {e}")
st.error(f"Error in Confidence Analysis tab: {e}")
with tab2:
# Performance metrics
models = list(successful_results.keys())
times = [
successful_results[m]["processing_time"]
for m in models
]
if len(times) == 0:
st.warning(
"No performance data available for visualization"
)
else:
perf_col1, perf_col2 = st.columns(2)
with perf_col1:
# Processing time comparison
fig, ax = plt.subplots(figsize=(8, 5))
bars = ax.bar(
models, times, alpha=0.8, color="skyblue"
)
for bar, time_val in zip(bars, times):
height = bar.get_height()
ax.text(
bar.get_x() + bar.get_width() / 2.0,
height + 0.001,
f"{time_val:.3f}s",
ha="center",
va="bottom",
)
ax.set_ylabel("Processing Time (s)")
ax.set_title("Model Processing Time Comparison")
plt.xticks(rotation=45)
plt.tight_layout()
st.pyplot(fig)
with perf_col2:
# Performance statistics
st.markdown("**Performance Statistics**")
perf_stats = {
"Fastest Model": models[np.argmin(times)],
"Slowest Model": models[np.argmax(times)],
"Total Time": f"{np.sum(times):.3f}s",
"Average Time": f"{np.mean(times):.3f}s",
"Speed Difference": f"{np.max(times) - np.min(times):.3f}s",
}
for stat, value in perf_stats.items():
st.write(f"**{stat}**: {value}")
with tab3:
# Detailed breakdown
for (
model_name,
result,
) in successful_results.items():
with st.expander(
f"Detailed Results - {model_name}"
):
col1, col2 = st.columns(2)
with col1:
st.write(
f"**Prediction**: {result['predicted_class']}"
)
st.write(
f"**Confidence**: {result['confidence']:.4f}"
)
st.write(
f"**Processing Time**: {result['processing_time']:.4f}s"
)
# ROBUST CHECK FOR PROBABILITIES
if (
"probs" in result
and result["probs"] is not None
and len(result["probs"]) > 0
):
st.write("**Class Probabilities**:")
class_names = [
"Stable",
"Weathered",
]
for i, prob in enumerate(
result["probs"]
):
if i < len(class_names):
st.write(
f" - {class_names[i]}: {prob:.4f}"
)
with col2:
# ROBUST CHECK FOR LOGITS
if (
"logits" in result
and result["logits"] is not None
and len(result["logits"]) > 0
):
st.write("**Raw Logits**:")
for i, logit in enumerate(
result["logits"]
):
st.write(
f" - Class {i}: {logit:.4f}"
)
# Export options
st.markdown("##### Export Results")
export_col1, export_col2 = st.columns(2)
with export_col1:
if st.button("π Copy Results to Clipboard"):
results_text = df.to_string(index=False)
st.code(results_text)
with export_col2:
# Download results as CSV
csv_data = df.to_csv(index=False)
st.download_button(
label="πΎ Download as CSV",
data=csv_data,
file_name=f"model_comparison_{filename}_{time.strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv",
)
except Exception as e:
import traceback
st.error(f"Error during comparison: {str(e)}")
st.code(traceback.format_exc()) # Add traceback for debugging
# Show recent comparison results if available
elif "last_comparison_results" in st.session_state:
st.info(
"Previous comparison results available. Upload a new file or select a sample to run new comparison."
)
# Show comparison history
comparison_stats = ResultsManager.get_comparison_stats()
if comparison_stats:
st.markdown("#### Comparison History")
with st.expander("View detailed comparison statistics", expanded=False):
# Show model statistics table
stats_data = []
for model_name, stats in comparison_stats.items():
row = {
"Model": model_name,
"Total Predictions": stats["total_predictions"],
"Avg Confidence": f"{stats['avg_confidence']:.3f}",
"Avg Processing Time": f"{stats['avg_processing_time']:.3f}s",
"Accuracy": (
f"{stats['accuracy']:.3f}"
if stats["accuracy"] is not None
else "N/A"
),
}
stats_data.append(row)
if stats_data:
import pandas as pd
stats_df = pd.DataFrame(stats_data)
st.dataframe(stats_df, use_container_width=True)
# Show agreement matrix if multiple models
agreement_matrix = ResultsManager.get_agreement_matrix()
if not agreement_matrix.empty and len(agreement_matrix) > 1:
st.markdown("**Model Agreement Matrix**")
st.dataframe(agreement_matrix.round(3), use_container_width=True)
# Plot agreement heatmap
fig, ax = plt.subplots(figsize=(8, 6))
im = ax.imshow(
agreement_matrix.values, cmap="RdYlGn", vmin=0, vmax=1
)
# Add text annotations
for i in range(len(agreement_matrix)):
for j in range(len(agreement_matrix.columns)):
text = ax.text(
j,
i,
f"{agreement_matrix.iloc[i, j]:.2f}",
ha="center",
va="center",
color="black",
)
ax.set_xticks(range(len(agreement_matrix.columns)))
ax.set_yticks(range(len(agreement_matrix)))
ax.set_xticklabels(agreement_matrix.columns, rotation=45)
ax.set_yticklabels(agreement_matrix.index)
ax.set_title("Model Agreement Matrix")
plt.colorbar(im, ax=ax, label="Agreement Rate")
plt.tight_layout()
st.pyplot(fig)
# Export functionality
if "last_comparison_results" in st.session_state:
st.markdown("##### Export Results")
export_col1, export_col2 = st.columns(2)
with export_col1:
if st.button("π₯ Export Comparison (JSON)"):
import json
results = st.session_state["last_comparison_results"]
json_str = json.dumps(results, indent=2, default=str)
st.download_button(
label="Download JSON",
data=json_str,
file_name=f"comparison_{results['filename'].split('.')[0]}.json",
mime="application/json",
)
with export_col2:
if st.button("π Export Full Report"):
report = ResultsManager.export_comparison_report()
st.download_button(
label="Download Full Report",
data=report,
file_name="model_comparison_report.json",
mime="application/json",
)
from utils.performance_tracker import display_performance_dashboard
def render_performance_tab():
"""Render the performance tracking and analysis tab."""
display_performance_dashboard()
|