File size: 5,979 Bytes
fe030dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""

Core Training Engine for the POLYMEROS project.



This module contains the primary logic for model training and validation,

encapsulated in a reusable `TrainingEngine` class. It is designed to be

called by different interfaces, such as the command-line script

(train_model.py) and the web UI's TrainingManager.



This approach ensures that the core training process is consistent,

maintainable, and follows the DRY (Don't Repeat Yourself) principle.

"""

import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import TensorDataset, DataLoader
from sklearn.metrics import confusion_matrix, accuracy_score

from .training_types import (
    TrainingConfig,
    TrainingProgress,
    get_cv_splitter,
    augment_spectral_data,
)
from models.registry import build as build_model


class TrainingEngine:
    """Encapsulates the core model training and validation logic."""

    def __init__(self, config: TrainingConfig):
        """

        Initializes the TrainingEngine with a given configuration.



        Args:

            config (TrainingConfig): The configuration object for the training run.

        """
        self.config = config
        self.device = self._get_device()

    def _get_device(self) -> torch.device:
        """Selects the appropriate compute device."""
        if self.config.device == "auto":
            return torch.device("cuda" if torch.cuda.is_available() else "cpu")
        return torch.device(self.config.device)

    def run(

        self, X: np.ndarray, y: np.ndarray, progress_callback: callable = None

    ) -> dict:
        """

        Executes the full cross-validation training and evaluation loop.



        Args:

            X (np.ndarray): Feature data.

            y (np.ndarray): Label data.

            progress_callback (callable, optional): A function to call with

                                                    progress updates. Defaults to None.



        Returns:

            dict: A dictionary containing the final results and metrics.

        """
        cv_splitter = get_cv_splitter(self.config.cv_strategy, self.config.num_folds)

        fold_accuracies = []
        all_conf_matrices = []
        final_model_state = None

        for fold, (train_idx, val_idx) in enumerate(cv_splitter.split(X, y), 1):
            if progress_callback:
                progress_callback(
                    {
                        "type": "fold_start",
                        "fold": fold,
                        "total_folds": self.config.num_folds,
                    }
                )

            X_train, X_val = X[train_idx], X[val_idx]
            y_train, y_val = y[train_idx], y[val_idx]

            # Apply data augmentation if enabled
            if self.config.enable_augmentation:
                X_train, y_train = augment_spectral_data(
                    X_train, y_train, noise_level=self.config.noise_level
                )

            train_loader = DataLoader(
                TensorDataset(
                    torch.tensor(X_train, dtype=torch.float32),
                    torch.tensor(y_train, dtype=torch.long),
                ),
                batch_size=self.config.batch_size,
                shuffle=True,
            )
            val_loader = DataLoader(
                TensorDataset(
                    torch.tensor(X_val, dtype=torch.float32),
                    torch.tensor(y_val, dtype=torch.long),
                )
            )

            model = build_model(self.config.model_name, self.config.target_len).to(
                self.device
            )
            optimizer = torch.optim.Adam(
                model.parameters(), lr=self.config.learning_rate
            )
            criterion = nn.CrossEntropyLoss()

            for epoch in range(self.config.epochs):
                model.train()
                running_loss = 0.0
                for inputs, labels in train_loader:
                    inputs = inputs.unsqueeze(1).to(self.device)
                    labels = labels.to(self.device)

                    optimizer.zero_grad()
                    outputs = model(inputs)
                    loss = criterion(outputs, labels)
                    loss.backward()
                    optimizer.step()
                    running_loss += loss.item()

                if progress_callback:
                    progress_callback(
                        {
                            "type": "epoch_end",
                            "fold": fold,
                            "epoch": epoch + 1,
                            "total_epochs": self.config.epochs,
                            "loss": running_loss / len(train_loader),
                        }
                    )

            # Validation
            model.eval()
            all_true, all_pred = [], []
            with torch.no_grad():
                for inputs, labels in val_loader:
                    inputs = inputs.unsqueeze(1).to(self.device)
                    outputs = model(inputs)
                    _, predicted = torch.max(outputs, 1)
                    all_true.extend(labels.cpu().numpy())
                    all_pred.extend(predicted.cpu().numpy())

            acc = accuracy_score(all_true, all_pred)
            fold_accuracies.append(acc)
            all_conf_matrices.append(confusion_matrix(all_true, all_pred).tolist())
            final_model_state = model.state_dict()

            if progress_callback:
                progress_callback({"type": "fold_end", "fold": fold, "accuracy": acc})

        return {
            "fold_accuracies": fold_accuracies,
            "confusion_matrices": all_conf_matrices,
            "mean_accuracy": np.mean(fold_accuracies),
            "std_accuracy": np.std(fold_accuracies),
            "model_state_dict": final_model_state,
        }