Spaces:
Sleeping
Sleeping
| # models/registry.py | |
| from typing import Callable, Dict, List, Any | |
| from models.figure2_cnn import Figure2CNN | |
| from models.resnet_cnn import ResNet1D | |
| from models.resnet18_vision import ResNet18Vision | |
| # Internal registry of model builders keyed by short name. | |
| _REGISTRY: Dict[str, Callable[[int], object]] = { | |
| "figure2": lambda L: Figure2CNN(input_length=L), | |
| "resnet": lambda L: ResNet1D(input_length=L), | |
| "resnet18vision": lambda L: ResNet18Vision(input_length=L), | |
| } | |
| # Model specifications with metadata for enhanced features | |
| _MODEL_SPECS: Dict[str, Dict[str, Any]] = { | |
| "figure2": { | |
| "input_length": 500, | |
| "num_classes": 2, | |
| "description": "Figure 2 baseline custom implemetation", | |
| "modalities": ["raman", "ftir"], | |
| "citation": "Neo et al., 2023, Resour. Conserv. Recycl., 188, 106718", | |
| }, | |
| "resnet": { | |
| "input_length": 500, | |
| "num_classes": 2, | |
| "description": "(Residual Network) uses skip connections to train much deeper networks", | |
| "modalities": ["raman", "ftir"], | |
| "citation": "Custom ResNet implementation", | |
| }, | |
| "resnet18vision": { | |
| "input_length": 500, | |
| "num_classes": 2, | |
| "description": "excels at image recognition tasks by using 'residual blocks' to train more efficiently", | |
| "modalities": ["raman", "ftir"], | |
| "citation": "ResNet18 Vision adaptation", | |
| }, | |
| } | |
| # Placeholder for future model expansions | |
| _FUTURE_MODELS = { | |
| "densenet1d": { | |
| "description": "DenseNet1D for spectroscopy (placeholder)", | |
| "status": "planned", | |
| }, | |
| "ensemble_cnn": { | |
| "description": "Ensemble of CNN variants (placeholder)", | |
| "status": "planned", | |
| }, | |
| } | |
| def choices(): | |
| """Return the list of available model keys.""" | |
| return list(_REGISTRY.keys()) | |
| def planned_models(): | |
| """Return the list of planned future model keys.""" | |
| return list(_FUTURE_MODELS.keys()) | |
| def build(name: str, input_length: int): | |
| """Instantiate a model by short name with the given input length.""" | |
| if name not in _REGISTRY: | |
| raise ValueError(f"Unknown model '{name}'. Choices: {choices()}") | |
| return _REGISTRY[name](input_length) | |
| def build_multiple(names: List[str], input_length: int) -> Dict[str, Any]: | |
| """Nuild multiple models for comparison.""" | |
| models = {} | |
| for name in names: | |
| if name in _REGISTRY: | |
| models[name] = build(name, input_length) | |
| else: | |
| raise ValueError(f"Unknown model '{name}'. Available: {choices()}") | |
| return models | |
| def register_model( | |
| name: str, builder: Callable[[int], object], spec: Dict[str, Any] | |
| ) -> None: | |
| """Dynamically register a new model.""" | |
| if name in _REGISTRY: | |
| raise ValueError(f"Model '{name}' already registered.") | |
| if not callable(builder): | |
| raise TypeError("Builder must be a callable that accepts an integer argument.") | |
| _REGISTRY[name] = builder | |
| _MODEL_SPECS[name] = spec | |
| def spec(name: str): | |
| """Return expected input length and number of classes for a model key.""" | |
| if name in _MODEL_SPECS: | |
| return _MODEL_SPECS[name].copy() | |
| raise KeyError(f"Unknown model '{name}'. Available: {choices()}") | |
| def get_model_info(name: str) -> Dict[str, Any]: | |
| """Get comprehensive model information including metadata.""" | |
| if name in _MODEL_SPECS: | |
| return _MODEL_SPECS[name].copy() | |
| elif name in _FUTURE_MODELS: | |
| return _FUTURE_MODELS[name].copy() | |
| else: | |
| raise KeyError(f"Unknown model '{name}'") | |
| def models_for_modality(modality: str) -> List[str]: | |
| """Get list of models that support a specific modality.""" | |
| compatible = [] | |
| for name, spec_info in _MODEL_SPECS.items(): | |
| if modality in spec_info.get("modalities", []): | |
| compatible.append(name) | |
| return compatible | |
| def validate_model_list(names: List[str]) -> List[str]: | |
| """Validate and return list of available models from input list.""" | |
| available = choices() | |
| valid_models = [] | |
| for name in names: | |
| if name is available: | |
| valid_models.append(name) | |
| return valid_models | |
| __all__ = [ | |
| "choices", | |
| "build", | |
| "spec", | |
| "build_multiple", | |
| "register_model", | |
| "get_model_info", | |
| "models_for_modality", | |
| "validate_model_list", | |
| "planned_models", | |
| ] | |