Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import streamlit as st | |
| import hashlib | |
| import io | |
| from PIL import Image | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from typing import Union | |
| import time | |
| from config import MODEL_CONFIG, TARGET_LEN, LABEL_MAP | |
| from modules.callbacks import ( | |
| on_model_change, | |
| on_input_mode_change, | |
| on_sample_change, | |
| reset_results, | |
| reset_ephemeral_state, | |
| log_message, | |
| ) | |
| from core_logic import ( | |
| get_sample_files, | |
| load_model, | |
| run_inference, | |
| parse_spectrum_data, | |
| label_file, | |
| ) | |
| from utils.results_manager import ResultsManager | |
| from utils.confidence import calculate_softmax_confidence | |
| from utils.multifile import process_multiple_files, display_batch_results | |
| from utils.preprocessing import resample_spectrum | |
| def load_css(file_path): | |
| with open(file_path, encoding="utf-8") as f: | |
| st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
| def create_spectrum_plot(x_raw, y_raw, x_resampled, y_resampled, _cache_key=None): | |
| """Create spectrum visualization plot""" | |
| fig, ax = plt.subplots(1, 2, figsize=(13, 5), dpi=100) | |
| # Raw spectrum | |
| ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1) | |
| ax[0].set_title("Raw Input Spectrum") | |
| ax[0].set_xlabel("Wavenumber (cm⁻¹)") | |
| ax[0].set_ylabel("Intensity") | |
| ax[0].grid(True, alpha=0.3) | |
| ax[0].legend() | |
| # Resampled spectrum | |
| ax[1].plot( | |
| x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1 | |
| ) | |
| ax[1].set_title(f"Resampled ({len(y_resampled)} points)") | |
| ax[1].set_xlabel("Wavenumber (cm⁻¹)") | |
| ax[1].set_ylabel("Intensity") | |
| ax[1].grid(True, alpha=0.3) | |
| ax[1].legend() | |
| fig.tight_layout() | |
| # Convert to image | |
| buf = io.BytesIO() | |
| plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
| buf.seek(0) | |
| plt.close(fig) # Prevent memory leaks | |
| return Image.open(buf) | |
| # ////////////////////////////////////////// | |
| def render_confidence_progress( | |
| probs: np.ndarray, | |
| labels: list[str] = ["Stable", "Weathered"], | |
| highlight_idx: Union[int, None] = None, | |
| side_by_side: bool = True, | |
| ): | |
| """Render Streamlit native progress bars with scientific formatting.""" | |
| p = np.asarray(probs, dtype=float) | |
| p = np.clip(p, 0.0, 1.0) | |
| if side_by_side: | |
| cols = st.columns(len(labels)) | |
| for i, (lbl, val, col) in enumerate(zip(labels, p, cols)): | |
| with col: | |
| is_highlighted = highlight_idx is not None and i == highlight_idx | |
| label_text = f"**{lbl}**" if is_highlighted else lbl | |
| st.markdown(f"{label_text}: {val*100:.1f}%") | |
| st.progress(int(round(val * 100))) | |
| else: | |
| # Vertical layout for better readability | |
| for i, (lbl, val) in enumerate(zip(labels, p)): | |
| is_highlighted = highlight_idx is not None and i == highlight_idx | |
| # Create a container for each probability | |
| with st.container(): | |
| col1, col2 = st.columns([3, 1]) | |
| with col1: | |
| if is_highlighted: | |
| st.markdown(f"**{lbl}** ← Predicted") | |
| else: | |
| st.markdown(f"{lbl}") | |
| with col2: | |
| st.metric(label="", value=f"{val*100:.1f}%", delta=None) | |
| # Progress bar with conditional styling | |
| if is_highlighted: | |
| st.progress(int(round(val * 100))) | |
| st.caption("🎯 **Model Prediction**") | |
| else: | |
| st.progress(int(round(val * 100))) | |
| if i < len(labels) - 1: # Add spacing between items | |
| st.markdown("") | |
| from typing import Optional | |
| def render_kv_grid(d: Optional[dict] = None, ncols: int = 2): | |
| if d is None: | |
| d = {} | |
| if not d: | |
| return | |
| items = list(d.items()) | |
| cols = st.columns(ncols) | |
| for i, (k, v) in enumerate(items): | |
| with cols[i % ncols]: | |
| st.caption(f"**{k}:** {v}") | |
| # ////////////////////////////////////////// | |
| def render_model_meta(model_choice: str): | |
| info = MODEL_CONFIG.get(model_choice, {}) | |
| emoji = info.get("emoji", "") | |
| desc = info.get("description", "").strip() | |
| acc = info.get("accuracy", "-") | |
| f1 = info.get("f1", "-") | |
| st.caption(f"{emoji} **Model Snapshot** - {model_choice}") | |
| cols = st.columns(2) | |
| with cols[0]: | |
| st.metric("Accuracy", acc) | |
| with cols[1]: | |
| st.metric("F1 Score", f1) | |
| if desc: | |
| st.caption(desc) | |
| # ////////////////////////////////////////// | |
| def get_confidence_description(logit_margin): | |
| """Get human-readable confidence description""" | |
| if logit_margin > 1000: | |
| return "VERY HIGH", "🟢" | |
| elif logit_margin > 250: | |
| return "HIGH", "🟡" | |
| elif logit_margin > 100: | |
| return "MODERATE", "🟠" | |
| else: | |
| return "LOW", "🔴" | |
| # ////////////////////////////////////////// | |
| def render_sidebar(): | |
| with st.sidebar: | |
| # Header | |
| st.header("AI-Driven Polymer Classification") | |
| st.caption( | |
| "Predict polymer degradation (Stable vs Weathered) from Raman/FTIR spectra using validated CNN models. — v0.01" | |
| ) | |
| # Modality Selection | |
| st.markdown("##### Spectroscopy Modality") | |
| modality = st.selectbox( | |
| "Choose Modality", | |
| ["raman", "ftir"], | |
| index=0, | |
| key="modality_select", | |
| format_func=lambda x: f"{'Raman' if x == 'raman' else 'FTIR'}", | |
| ) | |
| # Display modality info | |
| if modality == "ftir": | |
| st.info("FTIR mode: 400-4000 cm-1 range with atmospheric correction") | |
| else: | |
| st.info("Raman mode: 200-4000 cm-1 range with standard preprocessing") | |
| # Model selection | |
| st.markdown("##### AI Model Selection") | |
| model_labels = [ | |
| f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys() | |
| ] | |
| selected_label = st.selectbox( | |
| "Choose AI Model", | |
| model_labels, | |
| key="model_select", | |
| on_change=on_model_change, | |
| ) | |
| model_choice = selected_label.split(" ", 1)[1] | |
| # Compact metadata directly under dropdown | |
| render_model_meta(model_choice) | |
| # Collapsed info to reduce clutter | |
| with st.expander("About This App", icon=":material/info:", expanded=False): | |
| st.markdown( | |
| """ | |
| **AI-Driven Polymer Aging Prediction and Classification** | |
| **Purpose**: Classify polymer degradation using AI<br> | |
| **Input**: Raman spectroscopy .txt files<br> | |
| **Models**: CNN architectures for classification<br> | |
| **Modalities**: Raman and FTIR spectroscopy support<br> | |
| **Features**: Multi-model comparison and analysis<br> | |
| **Contributors**<br> | |
| - Dr. Sanmukh Kuppannagari (Mentor)<br> | |
| - Dr. Metin Karailyan (Mentor)<br> | |
| - Jaser Hasan (Author)<br> | |
| **Links**<br> | |
| [HF Space](https://huggingface.co/spaces/dev-jas/polymer-aging-ml)<br> | |
| [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling) | |
| **Citation Figure2CNN (baseline)** | |
| Neo et al., 2023, *Resour. Conserv. Recycl.*, 188, 106718. | |
| [https://doi.org/10.1016/j.resconrec.2022.106718](https://doi.org/10.1016/j.resconrec.2022.106718) | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| # ////////////////////////////////////////// | |
| def render_input_column(): | |
| st.markdown("##### Data Input") | |
| mode = st.radio( | |
| "Input mode", | |
| ["Upload File", "Batch Upload", "Sample Data"], | |
| key="input_mode", | |
| horizontal=True, | |
| on_change=on_input_mode_change, | |
| ) | |
| # == Input Mode Logic == | |
| if mode == "Upload File": | |
| upload_key = st.session_state["current_upload_key"] | |
| up = st.file_uploader( | |
| "Upload spectrum file (.txt, .csv, .json)", | |
| type=["txt", "csv", "json"], | |
| help="Upload spectroscopy data: TXT (2-column), CSV (with headers), or JSON format", | |
| key=upload_key, # ← versioned key | |
| ) | |
| # Process change immediately | |
| if up is not None: | |
| raw = up.read() | |
| text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
| # only reparse if its a different file|source | |
| if ( | |
| st.session_state.get("filename") != getattr(up, "name", None) | |
| or st.session_state.get("input_source") != "upload" | |
| ): | |
| st.session_state["input_text"] = text | |
| st.session_state["filename"] = getattr(up, "name", None) | |
| st.session_state["input_source"] = "upload" | |
| # Ensure single file mode | |
| st.session_state["batch_mode"] = False | |
| st.session_state["status_message"] = ( | |
| f"File '{st.session_state['filename']}' ready for analysis" | |
| ) | |
| st.session_state["status_type"] = "success" | |
| reset_results("New file uploaded") | |
| # Batch Upload tab | |
| elif mode == "Batch Upload": | |
| st.session_state["batch_mode"] = True | |
| # Use a versioned key to ensure the file uploader resets properly. | |
| batch_upload_key = f"batch_upload_{st.session_state['uploader_version']}" | |
| uploaded_files = st.file_uploader( | |
| "Upload multiple spectrum files (.txt, .csv, .json)", | |
| type=["txt", "csv", "json"], | |
| accept_multiple_files=True, | |
| help="Upload spectroscopy files in TXT, CSV, or JSON format.", | |
| key=batch_upload_key, | |
| ) | |
| if uploaded_files: | |
| # Use a dictionary to keep only unique files based on name and size | |
| unique_files = {(file.name, file.size): file for file in uploaded_files} | |
| unique_file_list = list(unique_files.values()) | |
| num_uploaded = len(uploaded_files) | |
| num_unique = len(unique_file_list) | |
| # Optionally, inform the user that duplicates were removed | |
| if num_uploaded > num_unique: | |
| st.info(f"{num_uploaded - num_unique} duplicate file(s) were removed.") | |
| # Use the unique list | |
| st.session_state["batch_files"] = unique_file_list | |
| st.session_state["status_message"] = ( | |
| f"{num_unique} ready for batch analysis" | |
| ) | |
| st.session_state["status_type"] = "success" | |
| else: | |
| st.session_state["batch_files"] = [] | |
| # This check prevents resetting the status if files are already staged | |
| if not st.session_state.get("batch_files"): | |
| st.session_state["status_message"] = ( | |
| "No files selected for batch processing" | |
| ) | |
| st.session_state["status_type"] = "info" | |
| # Sample tab | |
| elif mode == "Sample Data": | |
| st.session_state["batch_mode"] = False | |
| sample_files = get_sample_files() | |
| if sample_files: | |
| options = ["-- Select Sample --"] + [p.name for p in sample_files] | |
| sel = st.selectbox( | |
| "Choose sample spectrum:", | |
| options, | |
| key="sample_select", | |
| on_change=on_sample_change, | |
| ) | |
| if sel != "-- Select Sample --": | |
| st.session_state["status_message"] = ( | |
| f"📁 Sample '{sel}' ready for analysis" | |
| ) | |
| st.session_state["status_type"] = "success" | |
| else: | |
| st.info("No sample data available") | |
| # == Status box (displays the message) == | |
| msg = st.session_state.get("status_message", "Ready") | |
| typ = st.session_state.get("status_type", "info") | |
| if typ == "success": | |
| st.success(msg) | |
| elif typ == "error": | |
| st.error(msg) | |
| else: | |
| st.info(msg) | |
| # Safely get model choice from session state | |
| model_choice = st.session_state.get("model_select", " ").split(" ", 1)[1] | |
| model = load_model(model_choice) | |
| # Determine if the app is ready for inference | |
| is_batch_ready = st.session_state.get("batch_mode", False) and st.session_state.get( | |
| "batch_files" | |
| ) | |
| is_single_ready = not st.session_state.get( | |
| "batch_mode", False | |
| ) and st.session_state.get("input_text") | |
| inference_ready = (is_batch_ready or is_single_ready) and model is not None | |
| # Store for other modules to access | |
| st.session_state["inference_ready"] = inference_ready | |
| # Render buttons | |
| with st.form("analysis_form", clear_on_submit=False): | |
| submitted = st.form_submit_button( | |
| "Run Analysis", type="primary", disabled=not inference_ready | |
| ) | |
| st.button( | |
| "Reset All", | |
| on_click=reset_ephemeral_state, | |
| help="Clear all uploaded files and results.", | |
| ) | |
| # Handle form submission | |
| if submitted and inference_ready: | |
| if st.session_state.get("batch_mode"): | |
| batch_files = st.session_state.get("batch_files", []) | |
| with st.spinner(f"Processing {len(batch_files)} files ..."): | |
| st.session_state["batch_results"] = process_multiple_files( | |
| uploaded_files=batch_files, | |
| model_choice=model_choice, | |
| load_model_func=load_model, | |
| run_inference_func=run_inference, | |
| label_file_func=label_file, | |
| ) | |
| else: | |
| try: | |
| x_raw, y_raw = parse_spectrum_data(st.session_state["input_text"]) | |
| x_resampled, y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN) | |
| st.session_state.update( | |
| { | |
| "x_raw": x_raw, | |
| "y_raw": y_raw, | |
| "x_resampled": x_resampled, | |
| "y_resampled": y_resampled, | |
| "inference_run_once": True, | |
| } | |
| ) | |
| except (ValueError, TypeError) as e: | |
| st.error(f"Error processing spectrum data: {e}") | |
| # ////////////////////////////////////////// | |
| def render_results_column(): | |
| # Get the current mode and check for batch results | |
| is_batch_mode = st.session_state.get("batch_mode", False) | |
| has_batch_results = "batch_results" in st.session_state | |
| if is_batch_mode and has_batch_results: | |
| # THEN render the main interactive dashboard from ResultsManager | |
| ResultsManager.display_results_table() | |
| elif st.session_state.get("inference_run_once", False) and not is_batch_mode: | |
| st.markdown("##### Analysis Results") | |
| # Get data from session state | |
| x_raw = st.session_state.get("x_raw") | |
| y_raw = st.session_state.get("y_raw") | |
| x_resampled = st.session_state.get("x_resampled") # ← NEW | |
| y_resampled = st.session_state.get("y_resampled") | |
| filename = st.session_state.get("filename", "Unknown") | |
| if all(v is not None for v in [x_raw, y_raw, y_resampled]): | |
| # Run inference | |
| if y_resampled is None: | |
| raise ValueError( | |
| "y_resampled is None. Ensure spectrum data is properly resampled before proceeding." | |
| ) | |
| cache_key = hashlib.md5( | |
| f"{y_resampled.tobytes()}{st.session_state.get('model_select', 'Unknown').split(' ', 1)[1]}".encode() | |
| ).hexdigest() | |
| prediction, logits_list, probs, inference_time, logits = run_inference( | |
| y_resampled, | |
| ( | |
| st.session_state.get("model_select", "").split(" ", 1)[1] | |
| if "model_select" in st.session_state | |
| else None | |
| ), | |
| _cache_key=cache_key, | |
| ) | |
| if prediction is None: | |
| st.error( | |
| "❌ Inference failed: Model not loaded. Please check that weights are available." | |
| ) | |
| st.stop() # prevents the rest of the code in this block from executing | |
| log_message( | |
| f"Inference completed in {inference_time:.2f}s, prediction: {prediction}" | |
| ) | |
| # Get ground truth | |
| true_label_idx = label_file(filename) | |
| true_label_str = ( | |
| LABEL_MAP.get(true_label_idx, "Unknown") | |
| if true_label_idx is not None | |
| else "Unknown" | |
| ) | |
| # Get prediction | |
| predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}") | |
| # Enhanced confidence calculation | |
| if logits is not None: | |
| # Use new softmax-based confidence | |
| probs_np, max_confidence, confidence_level, confidence_emoji = ( | |
| calculate_softmax_confidence(logits) | |
| ) | |
| confidence_desc = confidence_level | |
| else: | |
| # Fallback to legacy method | |
| logit_margin = abs( | |
| (logits_list[0] - logits_list[1]) | |
| if logits_list is not None and len(logits_list) >= 2 | |
| else 0 | |
| ) | |
| confidence_desc, confidence_emoji = get_confidence_description( | |
| logit_margin | |
| ) | |
| max_confidence = logit_margin / 10.0 # Normalize for display | |
| probs_np = np.array([]) | |
| # Store result in results manager for single file too | |
| ResultsManager.add_results( | |
| filename=filename, | |
| model_name=( | |
| st.session_state.get("model_select", "").split(" ", 1)[1] | |
| if "model_select" in st.session_state | |
| else "Unknown" | |
| ), | |
| prediction=int(prediction), | |
| predicted_class=predicted_class, | |
| confidence=max_confidence, | |
| logits=logits_list if logits_list else [], | |
| ground_truth=true_label_idx if true_label_idx >= 0 else None, | |
| processing_time=inference_time if inference_time is not None else 0.0, | |
| metadata={ | |
| "confidence_level": confidence_desc, | |
| "confidence_emoji": confidence_emoji, | |
| }, | |
| ) | |
| # Precompute Stats | |
| model_choice = ( | |
| st.session_state.get("model_select", "").split(" ", 1)[1] | |
| if "model_select" in st.session_state | |
| else None | |
| ) | |
| if not model_choice: | |
| st.error( | |
| "⚠️ Model choice is not defined. Please select a model from the sidebar." | |
| ) | |
| st.stop() | |
| model_path = MODEL_CONFIG[model_choice]["path"] | |
| mtime = os.path.getmtime(model_path) if os.path.exists(model_path) else None | |
| file_hash = ( | |
| hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
| if os.path.exists(model_path) | |
| else "N/A" | |
| ) | |
| start_render = time.time() | |
| active_tab = st.selectbox( | |
| "View Results", | |
| ["Details", "Technical", "Explanation"], | |
| key="active_tab", # reuse the key you were managing manually | |
| ) | |
| if active_tab == "Details": | |
| st.markdown('<div class="expander-results">', unsafe_allow_html=True) | |
| # Use a dynamic and informative title for the expander | |
| with st.expander(f"Results for {filename}", expanded=True): | |
| # --- START: STREAMLINED METRICS --- | |
| # A single, powerful row for the most important results. | |
| key_metric_cols = st.columns(3) | |
| # Metric 1: The Prediction | |
| key_metric_cols[0].metric("Prediction", predicted_class) | |
| # Metric 2: The Confidence (with level in tooltip) | |
| confidence_icon = ( | |
| "🟢" | |
| if max_confidence >= 0.8 | |
| else "🟡" if max_confidence >= 0.6 else "🔴" | |
| ) | |
| key_metric_cols[1].metric( | |
| "Confidence", | |
| f"{confidence_icon} {max_confidence:.1%}", | |
| help=f"Confidence Level: {confidence_desc}", | |
| ) | |
| # Metric 3: Ground Truth + Correctness (Combined) | |
| if true_label_idx is not None: | |
| is_correct = predicted_class == true_label_str | |
| delta_text = "✅ Correct" if is_correct else "❌ Incorrect" | |
| # Use delta_color="normal" to let the icon provide the visual cue | |
| key_metric_cols[2].metric( | |
| "Ground Truth", | |
| true_label_str, | |
| delta=delta_text, | |
| delta_color="normal", | |
| ) | |
| else: | |
| key_metric_cols[2].metric("Ground Truth", "N/A") | |
| st.divider() | |
| # --- END: STREAMLINED METRICS --- | |
| # --- START: CONSOLIDATED CONFIDENCE ANALYSIS --- | |
| st.markdown("##### Probability Breakdown") | |
| # This custom bullet bar logic remains as it is highly specific and valuable | |
| def create_bullet_bar(probability, width=20, predicted=False): | |
| filled_count = int(probability * width) | |
| bar = "▤" * filled_count + "▢" * (width - filled_count) | |
| percentage = f"{probability:.1%}" | |
| pred_marker = "↩ Predicted" if predicted else "" | |
| return f"{bar} {percentage} {pred_marker}" | |
| if probs is not None: | |
| stable_prob, weathered_prob = probs[0], probs[1] | |
| else: | |
| st.error( | |
| "❌ Probability values are missing. Please check the inference process." | |
| ) | |
| # Default values to prevent further errors | |
| stable_prob, weathered_prob = 0.0, 0.0 | |
| is_stable_predicted, is_weathered_predicted = ( | |
| int(prediction) == 0 | |
| ), (int(prediction) == 1) | |
| st.markdown( | |
| f""" | |
| <div style="font-family: 'Fira Code', monospace;"> | |
| Stable (Unweathered)<br> | |
| {create_bullet_bar(stable_prob, predicted=is_stable_predicted)}<br><br> | |
| Weathered (Degraded)<br> | |
| {create_bullet_bar(weathered_prob, predicted=is_weathered_predicted)} | |
| </div> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| st.divider() | |
| # METADATA FOOTER | |
| st.caption( | |
| f"Analyzed with **{st.session_state.get('model_select', 'Unknown')}** in **{inference_time:.2f}s**." | |
| ) | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| elif active_tab == "Technical": | |
| with st.container(): | |
| st.markdown("Technical Diagnostics") | |
| # Model performance metrics | |
| with st.container(border=True): | |
| st.markdown("##### **Model Performance**") | |
| tech_col1, tech_col2 = st.columns(2) | |
| with tech_col1: | |
| st.metric("Inference Time", f"{inference_time:.3f}s") | |
| st.metric( | |
| "Input Length", | |
| f"{len(x_raw) if x_raw is not None else 0} points", | |
| ) | |
| st.metric("Resampled Length", f"{TARGET_LEN} points") | |
| with tech_col2: | |
| st.metric( | |
| "Model Loaded", | |
| ( | |
| "✅ Yes" | |
| if st.session_state.get("model_loaded", False) | |
| else "❌ No" | |
| ), | |
| ) | |
| st.metric("Device", "CPU") | |
| st.metric("Confidence Score", f"{max_confidence:.3f}") | |
| # Raw logits display | |
| with st.container(border=True): | |
| st.markdown("##### **Raw Model Outputs (Logits)**") | |
| logits_df = { | |
| "Class": ( | |
| [ | |
| LABEL_MAP.get(i, f"Class {i}") | |
| for i in range(len(logits_list)) | |
| ] | |
| if logits_list is not None | |
| else [] | |
| ), | |
| "Logit Value": ( | |
| [f"{score:.4f}" for score in logits_list] | |
| if logits_list is not None | |
| else [] | |
| ), | |
| "Probability": ( | |
| [f"{prob:.4f}" for prob in probs_np] | |
| if logits_list is not None and len(probs_np) > 0 | |
| else [] | |
| ), | |
| } | |
| # Display as a simple table format | |
| for i, (cls, logit, prob) in enumerate( | |
| zip( | |
| logits_df["Class"], | |
| logits_df["Logit Value"], | |
| logits_df["Probability"], | |
| ) | |
| ): | |
| col1, col2, col3 = st.columns([2, 1, 1]) | |
| with col1: | |
| if i == prediction: | |
| st.markdown(f"**{cls}** ← Predicted") | |
| else: | |
| st.markdown(cls) | |
| with col2: | |
| st.caption(f"Logit: {logit}") | |
| with col3: | |
| st.caption(f"Prob: {prob}") | |
| # Spectrum statistics in organized sections | |
| with st.container(border=True): | |
| st.markdown("##### **Spectrum Analysis**") | |
| spec_cols = st.columns(2) | |
| with spec_cols[0]: | |
| st.markdown("**Original Spectrum:**") | |
| render_kv_grid( | |
| { | |
| "Length": f"{len(x_raw) if x_raw is not None else 0} points", | |
| "Range": ( | |
| f"{min(x_raw):.1f} - {max(x_raw):.1f} cm⁻¹" | |
| if x_raw is not None | |
| else "N/A" | |
| ), | |
| "Min Intensity": ( | |
| f"{min(y_raw):.2e}" | |
| if y_raw is not None | |
| else "N/A" | |
| ), | |
| "Max Intensity": ( | |
| f"{max(y_raw):.2e}" | |
| if y_raw is not None | |
| else "N/A" | |
| ), | |
| }, | |
| ncols=1, | |
| ) | |
| with spec_cols[1]: | |
| st.markdown("**Processed Spectrum:**") | |
| render_kv_grid( | |
| { | |
| "Length": f"{TARGET_LEN} points", | |
| "Resampling": "Linear interpolation", | |
| "Normalization": "None", | |
| "Input Shape": f"(1, 1, {TARGET_LEN})", | |
| }, | |
| ncols=1, | |
| ) | |
| # Model information | |
| with st.container(border=True): | |
| st.markdown("##### **Model Information**") | |
| model_info_cols = st.columns(2) | |
| with model_info_cols[0]: | |
| render_kv_grid( | |
| { | |
| "Architecture": model_choice, | |
| "Path": MODEL_CONFIG[model_choice]["path"], | |
| "Weights Modified": ( | |
| time.strftime( | |
| "%Y-%m-%d %H:%M:%S", time.localtime(mtime) | |
| ) | |
| if mtime | |
| else "N/A" | |
| ), | |
| }, | |
| ncols=1, | |
| ) | |
| with model_info_cols[1]: | |
| if os.path.exists(model_path): | |
| file_hash = hashlib.md5( | |
| open(model_path, "rb").read() | |
| ).hexdigest() | |
| render_kv_grid( | |
| { | |
| "Weights Hash": f"{file_hash[:16]}...", | |
| "Output Shape": f"(1, {len(LABEL_MAP)})", | |
| "Activation": "Softmax", | |
| }, | |
| ncols=1, | |
| ) | |
| # Debug logs (collapsed by default) | |
| with st.expander("📋 Debug Logs", expanded=False): | |
| log_content = "\n".join( | |
| st.session_state.get("log_messages", []) | |
| ) | |
| if log_content.strip(): | |
| st.code(log_content, language="text") | |
| else: | |
| st.caption("No debug logs available") | |
| elif active_tab == "Explanation": | |
| with st.container(): | |
| st.markdown("### 🔍 Methodology & Interpretation") | |
| # Process explanation | |
| st.markdown("Analysis Pipeline") | |
| process_steps = [ | |
| "📁 **Data Upload**: Raman spectrum file loaded and validated", | |
| "🔍 **Preprocessing**: Spectrum parsed and resampled to 500 data points using linear interpolation", | |
| "🧠 **AI Inference**: Convolutional Neural Network analyzes spectral patterns and molecular signatures", | |
| "📊 **Classification**: Binary prediction with confidence scoring using softmax probabilities", | |
| "✅ **Validation**: Ground truth comparison (when available from filename)", | |
| ] | |
| for step in process_steps: | |
| st.markdown(step) | |
| st.markdown("---") | |
| # Model interpretation | |
| st.markdown("#### Scientific Interpretation") | |
| interp_col1, interp_col2 = st.columns(2) | |
| with interp_col1: | |
| st.markdown("**Stable (Unweathered) Polymers:**") | |
| st.info( | |
| """ | |
| - Well-preserved molecular structure | |
| - Minimal oxidative degradation | |
| - Characteristic Raman peaks intact | |
| - | |
| itable for recycling applications | |
| """ | |
| ) | |
| with interp_col2: | |
| st.markdown("**Weathered (Degraded) Polymers:**") | |
| st.warning( | |
| """ | |
| - Oxidized molecular bonds | |
| - Surface degradation present | |
| - Altered spectral signatures | |
| - May require additional processing | |
| """ | |
| ) | |
| st.markdown("---") | |
| # Applications | |
| st.markdown("#### Research Applications") | |
| applications = [ | |
| "🔬 **Material Science**: Polymer degradation studies", | |
| "♻️ **Recycling Research**: Viability assessment for circular economy", | |
| "🌱 **Environmental Science**: Microplastic weathering analysis", | |
| "🏭 **Quality Control**: Manufacturing process monitoring", | |
| "📈 **Longevity Studies**: Material aging prediction", | |
| ] | |
| for app in applications: | |
| st.markdown(app) | |
| # Technical details | |
| # MODIFIED: Wrap the expander in a div with the 'expander-advanced' class | |
| st.markdown( | |
| '<div class="expander-advanced">', unsafe_allow_html=True | |
| ) | |
| with st.expander("🔧 Technical Details", expanded=False): | |
| st.markdown( | |
| """ | |
| **Model Architecture:** | |
| - Convolutional layers for feature extraction | |
| - Residual connections for gradient flow | |
| - Fully connected layers for classification | |
| - Softmax activation for probability distribution | |
| **Performance Metrics:** | |
| - Accuracy: 94.8-96.2% on validation set | |
| - F1-Score: 94.3-95.9% across classes | |
| - Robust to spectral noise and baseline variations | |
| **Data Processing:** | |
| - Input: Raman spectra (any length) | |
| - Resampling: Linear interpolation to 500 points | |
| - Normalization: None (preserves intensity relationships) | |
| """ | |
| ) | |
| st.markdown( | |
| "</div>", unsafe_allow_html=True | |
| ) # Close the wrapper div | |
| render_time = time.time() - start_render | |
| log_message( | |
| f"col2 rendered in {render_time:.2f}s, active tab: {active_tab}" | |
| ) | |
| with st.expander("Spectrum Preprocessing Results", expanded=False): | |
| st.caption("<br>Spectral Analysis", unsafe_allow_html=True) | |
| # Add some context about the preprocessing | |
| st.markdown( | |
| """ | |
| **Preprocessing Overview:** | |
| - **Original Spectrum**: Raw Raman data as uploaded | |
| - **Resampled Spectrum**: Data interpolated to 500 points for model input | |
| - **Purpose**: Ensures consistent input dimensions for neural network | |
| """ | |
| ) | |
| # Create and display plot | |
| cache_key = hashlib.md5( | |
| f"{(x_raw.tobytes() if x_raw is not None else b'')}" | |
| f"{(y_raw.tobytes() if y_raw is not None else b'')}" | |
| f"{(x_resampled.tobytes() if x_resampled is not None else b'')}" | |
| f"{(y_resampled.tobytes() if y_resampled is not None else b'')}".encode() | |
| ).hexdigest() | |
| spectrum_plot = create_spectrum_plot( | |
| x_raw, y_raw, x_resampled, y_resampled, _cache_key=cache_key | |
| ) | |
| st.image( | |
| spectrum_plot, | |
| caption="Raman Spectrum: Raw vs Processed", | |
| use_container_width=True, | |
| ) | |
| else: | |
| st.markdown( | |
| """ | |
| ##### How to Get Started | |
| 1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model. | |
| 2. **Provide Your Data:** Select one of the three input modes: | |
| - **Upload File:** Analyze a single spectrum. | |
| - **Batch Upload:** Process multiple files at once. | |
| - **Sample Data:** Explore functionality with pre-loaded examples. | |
| 3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results. | |
| --- | |
| ##### Supported Data Format | |
| - **File Type:** Plain text (`.txt`) | |
| - **Content:** Must contain two columns: `wavenumber` and `intensity`. | |
| - **Separators:** Values can be separated by spaces or commas. | |
| - **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements. | |
| --- | |
| ##### Example Applications | |
| - 🔬 Research on polymer degradation | |
| - ♻️ Recycling feasibility assessment | |
| - 🌱 Sustainability impact studies | |
| - 🏭 Quality control in manufacturing | |
| """ | |
| ) | |
| else: | |
| # Getting Started | |
| st.markdown( | |
| """ | |
| ##### How to Get Started | |
| 1. **Select an AI Model:** Use the dropdown menu in the sidebar to choose a model. | |
| 2. **Provide Your Data:** Select one of the three input modes: | |
| - **Upload File:** Analyze a single spectrum. | |
| - **Batch Upload:** Process multiple files at once. | |
| - **Sample Data:** Explore functionality with pre-loaded examples. | |
| 3. **Run Analysis:** Click the "Run Analysis" button to generate the classification results. | |
| --- | |
| ##### Supported Data Format | |
| - **File Type:** Plain text (`.txt`) | |
| - **Content:** Must contain two columns: `wavenumber` and `intensity`. | |
| - **Separators:** Values can be separated by spaces or commas. | |
| - **Preprocessing:** Your spectrum will be automatically resampled to 500 data points to match the model's input requirements. | |
| --- | |
| ##### Example Applications | |
| - 🔬 Research on polymer degradation | |
| - ♻️ Recycling feasibility assessment | |
| - 🌱 Sustainability impact studies | |
| - 🏭 Quality control in manufacturing | |
| """ | |
| ) | |
| # ////////////////////////////////////////// | |
| def render_comparison_tab(): | |
| """Render the multi-model comparison interface""" | |
| import streamlit as st | |
| import matplotlib.pyplot as plt | |
| from models.registry import choices, validate_model_list | |
| from utils.results_manager import ResultsManager | |
| from core_logic import get_sample_files, run_inference, parse_spectrum_data | |
| from utils.preprocessing import preprocess_spectrum | |
| from utils.multifile import parse_spectrum_data | |
| import numpy as np | |
| import time | |
| st.markdown("### Multi-Model Comparison Analysis") | |
| st.markdown( | |
| "Compare predictions across different AI models for comprehensive analysis." | |
| ) | |
| # Model selection for comparison | |
| st.markdown("##### Select Models for Comparison") | |
| available_models = choices() | |
| selected_models = st.multiselect( | |
| "Choose models to compare", | |
| available_models, | |
| default=( | |
| available_models[:2] if len(available_models) >= 2 else available_models | |
| ), | |
| help="Select 2 or more models to compare their predictions side-by-side", | |
| ) | |
| if len(selected_models) < 2: | |
| st.warning("⚠️ Please select at least 2 models for comparison.") | |
| # Input selection for comparison | |
| col1, col2 = st.columns([1, 1.5]) | |
| with col1: | |
| st.markdown("###### Input Data") | |
| # File upload for comparison | |
| comparison_file = st.file_uploader( | |
| "Upload spectrum for comparison", | |
| type=["txt", "csv", "json"], | |
| key="comparison_file_upload", | |
| help="Upload a spectrum file to test across all selected models", | |
| ) | |
| # Or select sample data | |
| selected_sample = None # Initialize with a default value | |
| sample_files = get_sample_files() | |
| if sample_files: | |
| sample_options = ["-- Select Sample --"] + [p.name for p in sample_files] | |
| selected_sample = st.selectbox( | |
| "Or choose sample data", sample_options, key="comparison_sample_select" | |
| ) | |
| # Get modality from session state | |
| modality = st.session_state.get("modality_select", "raman") | |
| st.info(f"Using {modality.upper()} preprocessing parameters") | |
| # Run comparison button | |
| run_comparison = st.button( | |
| "Run Multi-Model Comparison", | |
| type="primary", | |
| disabled=not ( | |
| comparison_file | |
| or (sample_files and selected_sample != "-- Select Sample --") | |
| ), | |
| ) | |
| with col2: | |
| st.markdown("###### Comparison Results") | |
| if run_comparison: | |
| # Determine input source | |
| input_text = None | |
| filename = "unknown" | |
| if comparison_file: | |
| raw = comparison_file.read() | |
| input_text = raw.decode("utf-8") if isinstance(raw, bytes) else raw | |
| filename = comparison_file.name | |
| elif sample_files and selected_sample != "-- Select Sample --": | |
| sample_path = next(p for p in sample_files if p.name == selected_sample) | |
| with open(sample_path, "r") as f: | |
| input_text = f.read() | |
| filename = selected_sample | |
| if input_text: | |
| try: | |
| # Parse spectrum data | |
| x_raw, y_raw = parse_spectrum_data( | |
| str(input_text), filename or "unknown_filename" | |
| ) | |
| # Store results | |
| comparison_results = {} | |
| processing_times = {} | |
| progress_bar = st.progress(0) | |
| status_text = st.empty() | |
| for i, model_name in enumerate(selected_models): | |
| status_text.text(f"Running inference with {model_name}...") | |
| start_time = time.time() | |
| # Preprocess spectrum with modality-specific parameters | |
| _, y_processed = preprocess_spectrum( | |
| x_raw, y_raw, modality=modality, target_len=500 | |
| ) | |
| # Run inference | |
| prediction, logits_list, probs, inference_time, logits = ( | |
| run_inference(y_processed, model_name) | |
| ) | |
| processing_time = time.time() - start_time | |
| if prediction is not None: | |
| # Map prediction to class name | |
| class_names = ["Stable", "Weathered"] | |
| predicted_class = ( | |
| class_names[int(prediction)] | |
| if prediction < len(class_names) | |
| else f"Class_{prediction}" | |
| ) | |
| confidence = ( | |
| max(probs) | |
| if probs is not None and len(probs) > 0 | |
| else 0.0 | |
| ) | |
| comparison_results[model_name] = { | |
| "prediction": prediction, | |
| "predicted_class": predicted_class, | |
| "confidence": confidence, | |
| "probs": probs if probs is not None else [], | |
| "logits": ( | |
| logits_list if logits_list is not None else [] | |
| ), | |
| "processing_time": processing_time, | |
| } | |
| processing_times[model_name] = processing_time | |
| progress_bar.progress((i + 1) / len(selected_models)) | |
| status_text.text("Comparison complete!") | |
| # Display results | |
| if comparison_results: | |
| st.markdown("###### Model Predictions") | |
| # Create comparison table | |
| import pandas as pd | |
| table_data = [] | |
| for model_name, result in comparison_results.items(): | |
| row = { | |
| "Model": model_name, | |
| "Prediction": result["predicted_class"], | |
| "Confidence": f"{result['confidence']:.3f}", | |
| "Processing Time (s)": f"{result['processing_time']:.3f}", | |
| } | |
| table_data.append(row) | |
| df = pd.DataFrame(table_data) | |
| st.dataframe(df, use_container_width=True) | |
| # Show confidence comparison | |
| st.markdown("##### Confidence Comparison") | |
| conf_col1, conf_col2 = st.columns(2) | |
| with conf_col1: | |
| # Bar chart of confidences | |
| models = list(comparison_results.keys()) | |
| confidences = [ | |
| comparison_results[m]["confidence"] for m in models | |
| ] | |
| fig, ax = plt.subplots(figsize=(8, 5)) | |
| bars = ax.bar( | |
| models, | |
| confidences, | |
| alpha=0.7, | |
| color=["steelblue", "orange", "green", "red"][ | |
| : len(models) | |
| ], | |
| ) | |
| ax.set_ylabel("Confidence") | |
| ax.set_title("Model Confidence Comparison") | |
| ax.set_ylim(0, 1) | |
| plt.xticks(rotation=45) | |
| # Add value labels on bars | |
| for bar, conf in zip(bars, confidences): | |
| height = bar.get_height() | |
| ax.text( | |
| bar.get_x() + bar.get_width() / 2.0, | |
| height + 0.01, | |
| f"{conf:.3f}", | |
| ha="center", | |
| va="bottom", | |
| ) | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| with conf_col2: | |
| # Agreement analysis | |
| predictions = [ | |
| comparison_results[m]["prediction"] for m in models | |
| ] | |
| unique_predictions = set(predictions) | |
| if len(unique_predictions) == 1: | |
| st.success("✅ All models agree on the prediction!") | |
| else: | |
| st.warning("⚠️ Models disagree on the prediction") | |
| # Show prediction distribution | |
| from collections import Counter | |
| pred_counts = Counter(predictions) | |
| st.markdown("**Prediction Distribution:**") | |
| for pred, count in pred_counts.items(): | |
| class_name = ( | |
| ["Stable", "Weathered"][pred] | |
| if pred < 2 | |
| else f"Class_{pred}" | |
| ) | |
| percentage = (count / len(predictions)) * 100 | |
| st.write( | |
| f"- {class_name}: {count}/{len(predictions)} models ({percentage:.1f}%)" | |
| ) | |
| # Performance metrics | |
| st.markdown("##### Performance Metrics") | |
| perf_col1, perf_col2 = st.columns(2) | |
| with perf_col1: | |
| avg_time = np.mean(list(processing_times.values())) | |
| fastest_model = min( | |
| processing_times.keys(), | |
| key=lambda k: processing_times[k], | |
| ) | |
| slowest_model = max( | |
| processing_times.keys(), | |
| key=lambda k: processing_times[k], | |
| ) | |
| st.metric("Average Processing Time", f"{avg_time:.3f}s") | |
| st.metric( | |
| "Fastest Model", | |
| f"{fastest_model}", | |
| f"{processing_times[fastest_model]:.3f}s", | |
| ) | |
| st.metric( | |
| "Slowest Model", | |
| f"{slowest_model}", | |
| f"{processing_times[slowest_model]:.3f}s", | |
| ) | |
| with perf_col2: | |
| most_confident = max( | |
| comparison_results.keys(), | |
| key=lambda k: comparison_results[k]["confidence"], | |
| ) | |
| least_confident = min( | |
| comparison_results.keys(), | |
| key=lambda k: comparison_results[k]["confidence"], | |
| ) | |
| st.metric( | |
| "Most Confident", | |
| f"{most_confident}", | |
| f"{comparison_results[most_confident]['confidence']:.3f}", | |
| ) | |
| st.metric( | |
| "Least Confident", | |
| f"{least_confident}", | |
| f"{comparison_results[least_confident]['confidence']:.3f}", | |
| ) | |
| # Store results in session state for potential export | |
| # Store results in session state for potential export | |
| st.session_state["last_comparison_results"] = { | |
| "filename": filename, | |
| "modality": modality, | |
| "models": comparison_results, | |
| "summary": { | |
| "agreement": len(unique_predictions) == 1, | |
| "avg_processing_time": avg_time, | |
| "fastest_model": fastest_model, | |
| "most_confident": most_confident, | |
| }, | |
| } | |
| except Exception as e: | |
| st.error(f"Error during comparison: {str(e)}") | |
| # Show recent comparison results if available | |
| elif "last_comparison_results" in st.session_state: | |
| st.info( | |
| "Previous comparison results available. Upload a new file or select a sample to run new comparison." | |
| ) | |
| # Show comparison history | |
| comparison_stats = ResultsManager.get_comparison_stats() | |
| if comparison_stats: | |
| st.markdown("#### Comparison History") | |
| with st.expander("View detailed comparison statistics", expanded=False): | |
| # Show model statistics table | |
| stats_data = [] | |
| for model_name, stats in comparison_stats.items(): | |
| row = { | |
| "Model": model_name, | |
| "Total Predictions": stats["total_predictions"], | |
| "Avg Confidence": f"{stats['avg_confidence']:.3f}", | |
| "Avg Processing Time": f"{stats['avg_processing_time']:.3f}s", | |
| "Accuracy": ( | |
| f"{stats['accuracy']:.3f}" | |
| if stats["accuracy"] is not None | |
| else "N/A" | |
| ), | |
| } | |
| stats_data.append(row) | |
| if stats_data: | |
| import pandas as pd | |
| stats_df = pd.DataFrame(stats_data) | |
| st.dataframe(stats_df, use_container_width=True) | |
| # Show agreement matrix if multiple models | |
| agreement_matrix = ResultsManager.get_agreement_matrix() | |
| if not agreement_matrix.empty and len(agreement_matrix) > 1: | |
| st.markdown("**Model Agreement Matrix**") | |
| st.dataframe(agreement_matrix.round(3), use_container_width=True) | |
| # Plot agreement heatmap | |
| fig, ax = plt.subplots(figsize=(8, 6)) | |
| im = ax.imshow( | |
| agreement_matrix.values, cmap="RdYlGn", vmin=0, vmax=1 | |
| ) | |
| # Add text annotations | |
| for i in range(len(agreement_matrix)): | |
| for j in range(len(agreement_matrix.columns)): | |
| text = ax.text( | |
| j, | |
| i, | |
| f"{agreement_matrix.iloc[i, j]:.2f}", | |
| ha="center", | |
| va="center", | |
| color="black", | |
| ) | |
| ax.set_xticks(range(len(agreement_matrix.columns))) | |
| ax.set_yticks(range(len(agreement_matrix))) | |
| ax.set_xticklabels(agreement_matrix.columns, rotation=45) | |
| ax.set_yticklabels(agreement_matrix.index) | |
| ax.set_title("Model Agreement Matrix") | |
| plt.colorbar(im, ax=ax, label="Agreement Rate") | |
| plt.tight_layout() | |
| st.pyplot(fig) | |
| # Export functionality | |
| if "last_comparison_results" in st.session_state: | |
| st.markdown("##### Export Results") | |
| export_col1, export_col2 = st.columns(2) | |
| with export_col1: | |
| if st.button("📥 Export Comparison (JSON)"): | |
| import json | |
| results = st.session_state["last_comparison_results"] | |
| json_str = json.dumps(results, indent=2, default=str) | |
| st.download_button( | |
| label="Download JSON", | |
| data=json_str, | |
| file_name=f"comparison_{results['filename'].split('.')[0]}.json", | |
| mime="application/json", | |
| ) | |
| with export_col2: | |
| if st.button("📊 Export Full Report"): | |
| report = ResultsManager.export_comparison_report() | |
| st.download_button( | |
| label="Download Full Report", | |
| data=report, | |
| file_name="model_comparison_report.json", | |
| mime="application/json", | |
| ) | |
| # ////////////////////////////////////////// | |
| def render_performance_tab(): | |
| """Render the performance tracking and analysis tab.""" | |
| from utils.performance_tracker import display_performance_dashboard | |
| display_performance_dashboard() | |