Spaces:
Sleeping
Sleeping
| """Tests for multi-format file parsing functionality.""" | |
| import pytest | |
| import numpy as np | |
| from utils.multifile import ( | |
| parse_spectrum_data, | |
| detect_file_format, | |
| parse_json_spectrum, | |
| parse_csv_spectrum, | |
| parse_txt_spectrum, | |
| ) | |
| def test_detect_file_format(): | |
| """Test automatic file format detection.""" | |
| # JSON detection | |
| json_content = '{"wavenumbers": [1, 2, 3], "intensities": [0.1, 0.2, 0.3]}' | |
| assert detect_file_format("test.json", json_content) == "json" | |
| # CSV detection | |
| csv_content = "wavenumber,intensity\n1000,0.5\n1001,0.6" | |
| assert detect_file_format("test.csv", csv_content) == "csv" | |
| # TXT detection (default) | |
| txt_content = "1000 0.5\n1001 0.6" | |
| assert detect_file_format("test.txt", txt_content) == "txt" | |
| def test_parse_json_spectrum(): | |
| """Test JSON spectrum parsing.""" | |
| # Test object format | |
| json_content = '{"wavenumbers": [1000, 1001, 1002], "intensities": [0.1, 0.2, 0.3]}' | |
| x, y = parse_json_spectrum(json_content) | |
| expected_x = np.array([1000, 1001, 1002]) | |
| expected_y = np.array([0.1, 0.2, 0.3]) | |
| np.testing.assert_array_equal(x, expected_x) | |
| np.testing.assert_array_equal(y, expected_y) | |
| # Test alternative key names | |
| json_content_alt = '{"x": [1000, 1001, 1002], "y": [0.1, 0.2, 0.3]}' | |
| x_alt, y_alt = parse_json_spectrum(json_content_alt) | |
| np.testing.assert_array_equal(x_alt, expected_x) | |
| np.testing.assert_array_equal(y_alt, expected_y) | |
| # Test array of objects format | |
| json_array = """[ | |
| {"wavenumber": 1000, "intensity": 0.1}, | |
| {"wavenumber": 1001, "intensity": 0.2}, | |
| {"wavenumber": 1002, "intensity": 0.3} | |
| ]""" | |
| x_arr, y_arr = parse_json_spectrum(json_array) | |
| np.testing.assert_array_equal(x_arr, expected_x) | |
| np.testing.assert_array_equal(y_arr, expected_y) | |
| def test_parse_csv_spectrum(): | |
| """Test CSV spectrum parsing.""" | |
| # Test with headers | |
| csv_with_headers = """wavenumber,intensity | |
| 1000,0.1 | |
| 1001,0.2 | |
| 1002,0.3 | |
| 1003,0.4 | |
| 1004,0.5 | |
| 1005,0.6 | |
| 1006,0.7 | |
| 1007,0.8 | |
| 1008,0.9 | |
| 1009,1.0 | |
| 1010,1.1 | |
| 1011,1.2""" | |
| x, y = parse_csv_spectrum(csv_with_headers) | |
| expected_x = np.array( | |
| [1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011] | |
| ) | |
| expected_y = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]) | |
| np.testing.assert_array_equal(x, expected_x) | |
| np.testing.assert_array_equal(y, expected_y) | |
| # Test without headers | |
| csv_no_headers = """1000,0.1 | |
| 1001,0.2 | |
| 1002,0.3 | |
| 1003,0.4 | |
| 1004,0.5 | |
| 1005,0.6 | |
| 1006,0.7 | |
| 1007,0.8 | |
| 1008,0.9 | |
| 1009,1.0 | |
| 1010,1.1 | |
| 1011,1.2""" | |
| x_no_h, y_no_h = parse_csv_spectrum(csv_no_headers) | |
| np.testing.assert_array_equal(x_no_h, expected_x) | |
| np.testing.assert_array_equal(y_no_h, expected_y) | |
| # Test semicolon delimiter | |
| csv_semicolon = """1000;0.1 | |
| 1001;0.2 | |
| 1002;0.3 | |
| 1003;0.4 | |
| 1004;0.5 | |
| 1005;0.6 | |
| 1006;0.7 | |
| 1007;0.8 | |
| 1008;0.9 | |
| 1009;1.0 | |
| 1010;1.1 | |
| 1011;1.2""" | |
| x_semi, y_semi = parse_csv_spectrum(csv_semicolon) | |
| np.testing.assert_array_equal(x_semi, expected_x) | |
| np.testing.assert_array_equal(y_semi, expected_y) | |
| def test_parse_txt_spectrum(): | |
| """Test TXT spectrum parsing.""" | |
| txt_content = """# Comment line | |
| 1000 0.1 | |
| 1001 0.2 | |
| 1002 0.3 | |
| 1003 0.4 | |
| 1004 0.5 | |
| 1005 0.6 | |
| 1006 0.7 | |
| 1007 0.8 | |
| 1008 0.9 | |
| 1009 1.0 | |
| 1010 1.1 | |
| 1011 1.2""" | |
| x, y = parse_txt_spectrum(txt_content) | |
| expected_x = np.array( | |
| [1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011] | |
| ) | |
| expected_y = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]) | |
| np.testing.assert_array_equal(x, expected_x) | |
| np.testing.assert_array_equal(y, expected_y) | |
| # Test comma-separated | |
| txt_comma = """1000,0.1 | |
| 1001,0.2 | |
| 1002,0.3 | |
| 1003,0.4 | |
| 1004,0.5 | |
| 1005,0.6 | |
| 1006,0.7 | |
| 1007,0.8 | |
| 1008,0.9 | |
| 1009,1.0 | |
| 1010,1.1 | |
| 1011,1.2""" | |
| x_comma, y_comma = parse_txt_spectrum(txt_comma) | |
| np.testing.assert_array_equal(x_comma, expected_x) | |
| np.testing.assert_array_equal(y_comma, expected_y) | |
| def test_parse_spectrum_data_integration(): | |
| """Test integrated spectrum data parsing with format detection.""" | |
| # Test automatic format detection and parsing | |
| test_cases = [ | |
| ( | |
| '{"wavenumbers": [1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011], "intensities": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]}', | |
| "test.json", | |
| ), | |
| ( | |
| "wavenumber,intensity\n1000,0.1\n1001,0.2\n1002,0.3\n1003,0.4\n1004,0.5\n1005,0.6\n1006,0.7\n1007,0.8\n1008,0.9\n1009,1.0\n1010,1.1\n1011,1.2", | |
| "test.csv", | |
| ), | |
| ( | |
| "1000 0.1\n1001 0.2\n1002 0.3\n1003 0.4\n1004 0.5\n1005 0.6\n1006 0.7\n1007 0.8\n1008 0.9\n1009 1.0\n1010 1.1\n1011 1.2", | |
| "test.txt", | |
| ), | |
| ] | |
| for content, filename in test_cases: | |
| x, y = parse_spectrum_data(content, filename) | |
| assert len(x) >= 10 | |
| assert len(y) >= 10 | |
| assert len(x) == len(y) | |
| def test_insufficient_data_points(): | |
| """Test handling of insufficient data points.""" | |
| # Test with too few points | |
| insufficient_data = "1000 0.1\n1001 0.2" # Only 2 points, need at least 10 | |
| with pytest.raises(ValueError, match="Insufficient data points"): | |
| parse_txt_spectrum(insufficient_data, "test.txt") | |
| def test_invalid_json(): | |
| """Test handling of invalid JSON.""" | |
| invalid_json = ( | |
| '{"wavenumbers": [1000, 1001], "intensities": [0.1}' # Missing closing bracket | |
| ) | |
| with pytest.raises(ValueError, match="Invalid JSON format"): | |
| parse_json_spectrum(invalid_json) | |
| def test_empty_file(): | |
| """Test handling of empty files.""" | |
| empty_content = "" | |
| with pytest.raises(ValueError, match="No data lines found"): | |
| parse_txt_spectrum(empty_content, "empty.txt") | |
| if __name__ == "__main__": | |
| pytest.main([__file__]) | |