Spaces:
Sleeping
Sleeping
devjas1
(FEAT)[Add Training Types Module]: Introduce core data structures and types for training system, including TrainingConfig and TrainingProgress classes, along with cross-validation strategies and data augmentation functionality.
d6ff372
| """ | |
| Defines core data structures and types for the training system. | |
| This module centralizes data classes like TrainingConfig and helper | |
| functions to avoid circular dependencies between the TrainingManager | |
| and TrainingEngine. | |
| """ | |
| from dataclasses import dataclass, asdict, field | |
| from enum import Enum | |
| from typing import List, Optional, Dict, Any, Tuple | |
| from datetime import datetime | |
| import numpy as np | |
| from sklearn.model_selection import StratifiedKFold, KFold, TimeSeriesSplit | |
| class TrainingStatus(Enum): | |
| """Training job status enumeration""" | |
| PENDING = "pending" | |
| RUNNING = "running" | |
| COMPLETED = "completed" | |
| FAILED = "failed" | |
| CANCELLED = "cancelled" | |
| class CVStrategy(Enum): | |
| """Cross-validation strategy enumeration""" | |
| STRATIFIED_KFOLD = "stratified_kfold" | |
| KFOLD = "kfold" | |
| TIME_SERIES_SPLIT = "time_series_split" | |
| class TrainingConfig: | |
| """Training configuration parameters""" | |
| model_name: str | |
| dataset_path: str | |
| target_len: int = 500 | |
| batch_size: int = 16 | |
| epochs: int = 10 | |
| learning_rate: float = 1e-3 | |
| num_folds: int = 10 | |
| baseline_correction: bool = True | |
| smoothing: bool = True | |
| normalization: bool = True | |
| modality: str = "raman" | |
| device: str = "auto" # auto, cpu, cuda | |
| cv_strategy: str = "stratified_kfold" # New field for CV strategy | |
| spectral_weight: float = 0.1 # Weight for spectroscopy-specific metrics | |
| enable_augmentation: bool = False # Enable data augmentation | |
| noise_level: float = 0.01 # Noise level for augmentation | |
| def to_dict(self) -> Dict[str, Any]: | |
| """Convert to dictionary for serialization""" | |
| return asdict(self) | |
| class TrainingProgress: | |
| """Training progress tracking with enhanced metrics""" | |
| current_fold: int = 0 | |
| total_folds: int = 10 | |
| current_epoch: int = 0 | |
| total_epochs: int = 10 | |
| current_loss: float = 0.0 | |
| current_accuracy: float = 0.0 | |
| fold_accuracies: List[float] = field(default_factory=list) | |
| confusion_matrices: List[List[List[int]]] = field(default_factory=list) | |
| spectroscopy_metrics: List[Dict[str, float]] = field(default_factory=list) | |
| start_time: Optional[datetime] = None | |
| end_time: Optional[datetime] = None | |
| def get_cv_splitter(strategy: str, n_splits: int = 10, random_state: int = 42): | |
| """Get cross-validation splitter based on strategy""" | |
| if strategy == "stratified_kfold": | |
| return StratifiedKFold( | |
| n_splits=n_splits, shuffle=True, random_state=random_state | |
| ) | |
| elif strategy == "kfold": | |
| return KFold(n_splits=n_splits, shuffle=True, random_state=random_state) | |
| elif strategy == "time_series_split": | |
| return TimeSeriesSplit(n_splits=n_splits) | |
| else: | |
| # Default to stratified k-fold | |
| return StratifiedKFold( | |
| n_splits=n_splits, shuffle=True, random_state=random_state | |
| ) | |
| def augment_spectral_data( | |
| X: np.ndarray, | |
| y: np.ndarray, | |
| noise_level: float = 0.01, | |
| augmentation_factor: int = 2, | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """Augment spectral data with realistic noise and variations""" | |
| if augmentation_factor <= 1: | |
| return X, y | |
| augmented_X = [X] | |
| augmented_y = [y] | |
| for i in range(augmentation_factor - 1): | |
| # Add Gaussian noise | |
| noise = np.random.normal(0, noise_level, X.shape) | |
| X_noisy = X + noise | |
| # Add baseline drift (common in spectroscopy) | |
| baseline_drift = np.random.normal(0, noise_level * 0.5, (X.shape[0], 1)) | |
| X_drift = X_noisy + baseline_drift | |
| # Add intensity scaling variation | |
| intensity_scale = np.random.normal(1.0, 0.05, (X.shape[0], 1)) | |
| X_scaled = X_drift * intensity_scale | |
| # Ensure no negative values | |
| X_scaled = np.maximum(X_scaled, 0) | |
| augmented_X.append(X_scaled) | |
| augmented_y.append(y) | |
| return np.vstack(augmented_X), np.hstack(augmented_y) | |