devjas1 commited on
Commit
41ad1a1
ยท
1 Parent(s): 232a935

(DOCS)[CODEBASE_INVENTORY]: Update inventory to include FTIR support, enhance directory structure details, and refine preprocessing and performance tracking sections

Browse files
Files changed (1) hide show
  1. CODEBASE_INVENTORY.md +118 -13
CODEBASE_INVENTORY.md CHANGED
@@ -2,42 +2,48 @@
2
 
3
  ## Executive Summary
4
 
5
- This audit provides a complete technical inventory of the `dev-jas/polymer-aging-ml` repository, a sophisticated machine learning platform for polymer degradation classification using Raman spectroscopy. The system demonstrates production-ready architecture with comprehensive error handling, batch processing capabilities, and an extensible model framework spanning **34 files across 7 directories**.[^1_1][^1_2]
6
 
7
  ## ๐Ÿ—๏ธ System Architecture
8
 
9
  ### Core Infrastructure
10
 
11
- The platform employs a **Streamlit-based web application** (`app.py` - 53.7 kB) as its primary interface, supported by a modular backend architecture. The system integrates **PyTorch for deep learning**, **Docker for deployment**, and implements a plugin-based model registry for extensibility.[^1_2][^1_3][^1_4]
12
 
13
  ### Directory Structure Analysis
14
 
15
- The codebase maintains clean separation of concerns across seven primary directories:[^1_1]
16
 
17
  **Root Level Files:**
18
 
19
- - `app.py` (53.7 kB) - Main Streamlit application with two-column UI layout
20
- - `README.md` (4.8 kB) - Comprehensive project documentation
21
- - `Dockerfile` (421 Bytes) - Python 3.13-slim containerization
22
- - `requirements.txt` (132 Bytes) - Dependency management without version pinning
23
 
24
  **Core Directories:**
25
 
26
- - `models/` - Neural network architectures with registry pattern
27
- - `utils/` - Shared utility modules (43.2 kB total)
28
- - `scripts/` - CLI tools and automation workflows
29
- - `outputs/` - Pre-trained model weights storage
30
- - `sample_data/` - Demo spectrum files for testing
 
 
 
 
31
  - `tests/` - Unit testing infrastructure
32
  - `datasets/` - Data storage directory (content ignored)
 
33
 
34
  ## ๐Ÿค– Machine Learning Framework
35
 
36
  ### Model Registry System
37
 
38
- The platform implements a **sophisticated factory pattern** for model management in `models/registry.py`. This design enables dynamic model selection and provides a unified interface for different architectures:[^1_5]
39
 
40
  ```python
 
41
  _REGISTRY: Dict[str, Callable[[int], object]] = {
42
  "figure2": lambda L: Figure2CNN(input_length=L),
43
  "resnet": lambda L: ResNet1D(input_length=L),
@@ -47,6 +53,105 @@ _REGISTRY: Dict[str, Callable[[int], object]] = {
47
 
48
  ### Neural Network Architectures
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  **1. Figure2CNN (Baseline Model)**[^1_6]
51
 
52
  - **Architecture**: 4 convolutional layers with progressive channel expansion (1โ†’16โ†’32โ†’64โ†’128)
 
2
 
3
  ## Executive Summary
4
 
5
+ This audit provides a complete technical inventory of the `dev-jas/polymer-aging-ml` repository, a sophisticated machine learning platform for polymer degradation classification using **Raman and FTIR spectroscopy**. The system demonstrates a production-ready, multi-modal architecture with comprehensive error handling, multi-format batch processing, persistent performance tracking, and an extensible model framework spanning over **40 files across 8 directories**.
6
 
7
  ## ๐Ÿ—๏ธ System Architecture
8
 
9
  ### Core Infrastructure
10
 
11
+ The platform employs a **Streamlit-based web application** (`app.py`) as its primary interface, supported by a modular backend architecture. The system integrates **PyTorch for deep learning**, **Docker for deployment**, and implements a plugin-based model registry for extensibility. A **SQLite database** (`outputs/performance_tracking.db`) provides persistent storage for performance metrics.
12
 
13
  ### Directory Structure Analysis
14
 
15
+ The codebase maintains clean separation of concerns across eight primary directories:
16
 
17
  **Root Level Files:**
18
 
19
+ - `app.py` - Main Streamlit application with a multi-tab UI layout
20
+ - `README.md` - Comprehensive project documentation
21
+ - `Dockerfile` - Python 3.13-slim containerization
22
+ - `requirements.txt` - Dependency management
23
 
24
  **Core Directories:**
25
 
26
+ - `models/` - Neural network architectures with an expanded registry pattern
27
+ - `utils/` - Shared utility modules, including:
28
+ - `preprocessing.py`: Modality-aware (Raman/FTIR) preprocessing.
29
+ - `multifile.py`: Multi-format (TXT, CSV, JSON) data parsing and batch processing.
30
+ - `results_manager.py`: Session and persistent results management.
31
+ - `performance_tracker.py`: Performance analytics and database logging.
32
+ - `scripts/` - CLI tools for training, inference, and data management
33
+ - `outputs/` - Storage for pre-trained model weights, inference results, and the performance database
34
+ - `sample_data/` - Demo spectrum files for testing (including FTIR)
35
  - `tests/` - Unit testing infrastructure
36
  - `datasets/` - Data storage directory (content ignored)
37
+ - `pages/` - Streamlit pages for dashboarding and other UI components
38
 
39
  ## ๐Ÿค– Machine Learning Framework
40
 
41
  ### Model Registry System
42
 
43
+ The platform implements a **sophisticated factory pattern** for model management in `models/registry.py`. This design enables dynamic model selection and provides a unified interface for different architectures, now with added metadata for better model management.
44
 
45
  ```python
46
+ # Example from models/registry.py
47
  _REGISTRY: Dict[str, Callable[[int], object]] = {
48
  "figure2": lambda L: Figure2CNN(input_length=L),
49
  "resnet": lambda L: ResNet1D(input_length=L),
 
53
 
54
  ### Neural Network Architectures
55
 
56
+ The platform includes several neural network architectures, including a baseline CNN, a ResNet-based model, and an experimental ResNet-18 vision model adapted for 1D spectral data.
57
+
58
+ ## ๐Ÿ”ง Data Processing Infrastructure
59
+
60
+ ### Preprocessing Pipeline
61
+
62
+ The system implements a **modular and modality-aware preprocessing pipeline** in `utils/preprocessing.py`.
63
+
64
+ **1. Multi-Format Input Validation Framework:**
65
+
66
+ - **File Format Verification**: Supports `.txt`, `.csv`, and `.json` files with auto-detection.
67
+ - **Data Integrity**: Validates for minimum data points, monotonic wavenumbers, and NaN values.
68
+ - **Modality-Aware Validation**: Applies different wavenumber range checks for Raman and FTIR spectroscopy.
69
+
70
+ **2. Core Processing Steps:**
71
+
72
+ - **Linear Resampling**: Uniform grid interpolation to a standard length (e.g., 500 points).
73
+ - **Baseline Correction**: Polynomial detrending.
74
+ - **Savitzky-Golay Smoothing**: Noise reduction with modality-specific parameters.
75
+ - **Min-Max Normalization**: Scaling to a [0, 1] range.
76
+
77
+ ### Batch Processing Framework
78
+
79
+ The `utils/multifile.py` module provides **enterprise-grade batch processing** with multi-format support, error-tolerant processing, and progress tracking.
80
+
81
+ ## ๐Ÿ–ฅ๏ธ User Interface Architecture
82
+
83
+ ### Streamlit Application Design
84
+
85
+ The main application (`App.py`) implements a **multi-tab user interface** for different analysis modes:
86
+
87
+ - **Standard Analysis Tab**: For single-file or batch processing with a chosen model.
88
+ - **Model Comparison Tab**: Allows for side-by-side comparison of multiple models on the same data.
89
+ - **Performance Tracking Tab**: A dashboard to visualize and analyze model performance metrics from the SQLite database.
90
+
91
+ ### State Management System
92
+
93
+ The application employs **advanced session state management** (`st.session_state`) to maintain a consistent user experience across tabs and reruns, with intelligent caching for performance.
94
+
95
+ ## ๐Ÿ› ๏ธ Utility Infrastructure
96
+
97
+ ### Centralized Error Handling
98
+
99
+ The `utils/errors.py` module implements **production-grade error management** with context-aware logging and user-friendly error messages.
100
+
101
+ ### Performance Tracking System
102
+
103
+ The `utils/performance_tracker.py` module provides a robust system for logging and analyzing performance metrics.
104
+
105
+ - **Database Logging**: Persists metrics to a SQLite database.
106
+ - **Automated Tracking**: Uses a context manager to automatically track inference time, preprocessing time, and memory usage.
107
+ - **Dashboarding**: Includes functions to generate performance visualizations and summary statistics for the UI.
108
+
109
+ ### Enhanced Results Management
110
+
111
+ The `utils/results_manager.py` module enables comprehensive session and persistent results tracking.
112
+
113
+ - **In-Memory Storage**: Manages results for the current session.
114
+ - **Multi-Model Handling**: Aggregates results from multiple models for comparison.
115
+ - **Export Capabilities**: Exports results to CSV and JSON.
116
+ - **Statistical Analysis**: Calculates accuracy, confidence, and other metrics.
117
+
118
+ ## ๐Ÿ“œ Command-Line Interface
119
+
120
+ ### Inference Pipeline
121
+
122
+ The `scripts/run_inference.py` module provides **powerful automated inference capabilities**:
123
+
124
+ - **Multi-Model Inference**: Run multiple models on the same input for comparison.
125
+ - **Format Detection**: Automatically detects input file format (TXT, CSV, JSON).
126
+ - **Modality Support**: Explicitly supports both Raman and FTIR modalities.
127
+ - **Flexible Output**: Saves results in JSON or CSV format.
128
+
129
+ ## ๐Ÿงช Testing Framework
130
+
131
+ ### Test Infrastructure
132
+
133
+ The `tests/` directory contains the testing framework, now with expanded coverage:
134
+
135
+ - **PyTest Configuration**: Centralized test settings in `conftest.py`.
136
+ - **Preprocessing Tests**: Includes tests for both Raman and FTIR preprocessing.
137
+ - **Multi-Format Parsing Tests**: Validates the parsing of TXT, CSV, and JSON files.
138
+
139
+ ## ๐Ÿ”ฎ Strategic Development Roadmap
140
+
141
+ The project roadmap has been updated to reflect recent progress:
142
+
143
+ - [x] **FTIR Support**: Modular integration of FTIR spectroscopy is complete.
144
+ - [x] **Multi-Model Dashboard**: A model comparison tab has been implemented.
145
+ - [ ] **Image-based Inference**: Future work to include image-based polymer classification.
146
+ - [x] **Performance Tracking**: A performance tracking dashboard has been implemented.
147
+ - [ ] **Enterprise Integration**: Future work to include a RESTful API and more advanced database integration.
148
+
149
+ ## ๐Ÿ Audit Conclusion
150
+
151
+ This codebase represents a **significantly enhanced, multi-modal machine learning platform** that is well-suited for research, education, and industrial applications. The recent additions of FTIR support, multi-format data handling, performance tracking, and a multi-tab UI have greatly increased the usability and value of the project. The architecture remains robust, extensible, and well-documented, making it a solid foundation for future development.
152
+
153
+ ### Neural Network Architectures
154
+
155
  **1. Figure2CNN (Baseline Model)**[^1_6]
156
 
157
  - **Architecture**: 4 convolutional layers with progressive channel expansion (1โ†’16โ†’32โ†’64โ†’128)