Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
·
6cfb4d3
1
Parent(s):
64728dc
(FEAT)(New Models): Add advanced spectral CNN architectures
Browse files- Created `models/enhanced_cnn.py` for new model implementations.
- Added three model classes:
- `EnhancedCNN`: Combines attention blocks, multi-scale convolutions, and improved residual connections for robust spectral feature extraction.
- `EfficientSpectralCNN`: Lightweight, real-time model using depthwise separable convolutions for fast inference.
- `HybridSpectralNet`: Integrates CNN backbone with self-attention for hybrid spectral learning.
- All architectures are tailored for 1D polymer spectral data and inspired by SE-Net, ResNet, and Inception.
- Includes a factory function for easy model registration and instantiation.
- Enables extensible, high-performance model selection in the platform.
- models/enhanced_cnn.py +405 -0
models/enhanced_cnn.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
All neural network blocks and architectures in models/enhanced_cnn.py are custom implementations, developed to expand the model registry for advanced polymer spectral classification. While inspired by established deep learning concepts (such as residual connections, attention mechanisms, and multi-scale convolutions), they are are unique to this project and tailored for 1D spectral data.
|
| 3 |
+
|
| 4 |
+
Registry expansion: The purpose is to enrich the available models.
|
| 5 |
+
Literature inspiration: SE-Net, ResNet, Inception.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class AttentionBlock1D(nn.Module):
|
| 14 |
+
"""1D attention mechanism for spectral data."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, channels: int, reduction: int = 8):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.channels = channels
|
| 19 |
+
self.global_pool = nn.AdaptiveAvgPool1d(1)
|
| 20 |
+
self.fc = nn.Sequential(
|
| 21 |
+
nn.Linear(channels, channels // reduction),
|
| 22 |
+
nn.ReLU(inplace=True),
|
| 23 |
+
nn.Linear(channels // reduction, channels),
|
| 24 |
+
nn.Sigmoid(),
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
# x shape: [batch, channels, length]
|
| 29 |
+
b, c, _ = x.size()
|
| 30 |
+
|
| 31 |
+
# Global average pooling
|
| 32 |
+
y = self.global_pool(x).view(b, c)
|
| 33 |
+
|
| 34 |
+
# Fully connected layers
|
| 35 |
+
y = self.fc(y).view(b, c, 1)
|
| 36 |
+
|
| 37 |
+
# Apply attention weights
|
| 38 |
+
return x * y.expand_as(x)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class EnhancedResidualBlock1D(nn.Module):
|
| 42 |
+
"""Enhanced residual block with attention and improved normalization."""
|
| 43 |
+
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
in_channels: int,
|
| 47 |
+
out_channels: int,
|
| 48 |
+
kernel_size: int = 3,
|
| 49 |
+
use_attention: bool = True,
|
| 50 |
+
dropout_rate: float = 0.1,
|
| 51 |
+
):
|
| 52 |
+
super().__init__()
|
| 53 |
+
padding = kernel_size // 2
|
| 54 |
+
|
| 55 |
+
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding)
|
| 56 |
+
self.bn1 = nn.BatchNorm1d(out_channels)
|
| 57 |
+
self.relu = nn.ReLU(inplace=True)
|
| 58 |
+
|
| 59 |
+
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, padding=padding)
|
| 60 |
+
self.bn2 = nn.BatchNorm1d(out_channels)
|
| 61 |
+
|
| 62 |
+
self.dropout = nn.Dropout1d(dropout_rate) if dropout_rate > 0 else nn.Identity()
|
| 63 |
+
|
| 64 |
+
# Skip connection
|
| 65 |
+
self.skip = (
|
| 66 |
+
nn.Identity()
|
| 67 |
+
if in_channels == out_channels
|
| 68 |
+
else nn.Sequential(
|
| 69 |
+
nn.Conv1d(in_channels, out_channels, kernel_size=1),
|
| 70 |
+
nn.BatchNorm1d(out_channels),
|
| 71 |
+
)
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Attention mechanism
|
| 75 |
+
self.attention = (
|
| 76 |
+
AttentionBlock1D(out_channels) if use_attention else nn.Identity()
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
identity = self.skip(x)
|
| 81 |
+
|
| 82 |
+
out = self.conv1(x)
|
| 83 |
+
out = self.bn1(out)
|
| 84 |
+
out = self.relu(out)
|
| 85 |
+
out = self.dropout(out)
|
| 86 |
+
|
| 87 |
+
out = self.conv2(out)
|
| 88 |
+
out = self.bn2(out)
|
| 89 |
+
|
| 90 |
+
# Apply attention
|
| 91 |
+
out = self.attention(out)
|
| 92 |
+
|
| 93 |
+
out = out + identity
|
| 94 |
+
return self.relu(out)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class MultiScaleConvBlock(nn.Module):
|
| 98 |
+
"""Multi-scale convolution block for capturing features at different scales."""
|
| 99 |
+
|
| 100 |
+
def __init__(self, in_channels: int, out_channels: int):
|
| 101 |
+
super().__init__()
|
| 102 |
+
|
| 103 |
+
# Different kernel sizes for multi-scale feature extraction
|
| 104 |
+
self.conv1 = nn.Conv1d(in_channels, out_channels // 4, kernel_size=3, padding=1)
|
| 105 |
+
self.conv2 = nn.Conv1d(in_channels, out_channels // 4, kernel_size=5, padding=2)
|
| 106 |
+
self.conv3 = nn.Conv1d(in_channels, out_channels // 4, kernel_size=7, padding=3)
|
| 107 |
+
self.conv4 = nn.Conv1d(in_channels, out_channels // 4, kernel_size=9, padding=4)
|
| 108 |
+
|
| 109 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
| 110 |
+
self.relu = nn.ReLU(inplace=True)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
# Parallel convolutions with different kernel sizes
|
| 114 |
+
out1 = self.conv1(x)
|
| 115 |
+
out2 = self.conv2(x)
|
| 116 |
+
out3 = self.conv3(x)
|
| 117 |
+
out4 = self.conv4(x)
|
| 118 |
+
|
| 119 |
+
# Concatenate along channel dimension
|
| 120 |
+
out = torch.cat([out1, out2, out3, out4], dim=1)
|
| 121 |
+
out = self.bn(out)
|
| 122 |
+
return self.relu(out)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class EnhancedCNN(nn.Module):
|
| 126 |
+
"""Enhanced CNN with attention, multi-scale features, and improved architecture."""
|
| 127 |
+
|
| 128 |
+
def __init__(
|
| 129 |
+
self,
|
| 130 |
+
input_length: int = 500,
|
| 131 |
+
num_classes: int = 2,
|
| 132 |
+
dropout_rate: float = 0.2,
|
| 133 |
+
use_attention: bool = True,
|
| 134 |
+
):
|
| 135 |
+
super().__init__()
|
| 136 |
+
|
| 137 |
+
self.input_length = input_length
|
| 138 |
+
self.num_classes = num_classes
|
| 139 |
+
|
| 140 |
+
# Initial feature extraction
|
| 141 |
+
self.initial_conv = nn.Sequential(
|
| 142 |
+
nn.Conv1d(1, 32, kernel_size=7, padding=3),
|
| 143 |
+
nn.BatchNorm1d(32),
|
| 144 |
+
nn.ReLU(inplace=True),
|
| 145 |
+
nn.MaxPool1d(kernel_size=2),
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Multi-scale feature extraction
|
| 149 |
+
self.multiscale_block = MultiScaleConvBlock(32, 64)
|
| 150 |
+
self.pool1 = nn.MaxPool1d(kernel_size=2)
|
| 151 |
+
|
| 152 |
+
# Enhanced residual blocks
|
| 153 |
+
self.res_block1 = EnhancedResidualBlock1D(64, 96, use_attention=use_attention)
|
| 154 |
+
self.pool2 = nn.MaxPool1d(kernel_size=2)
|
| 155 |
+
|
| 156 |
+
self.res_block2 = EnhancedResidualBlock1D(96, 128, use_attention=use_attention)
|
| 157 |
+
self.pool3 = nn.MaxPool1d(kernel_size=2)
|
| 158 |
+
|
| 159 |
+
self.res_block3 = EnhancedResidualBlock1D(128, 160, use_attention=use_attention)
|
| 160 |
+
|
| 161 |
+
# Global feature extraction
|
| 162 |
+
self.global_pool = nn.AdaptiveAvgPool1d(1)
|
| 163 |
+
|
| 164 |
+
# Calculate feature size after convolutions
|
| 165 |
+
self.feature_size = 160
|
| 166 |
+
|
| 167 |
+
# Enhanced classifier with dropout
|
| 168 |
+
self.classifier = nn.Sequential(
|
| 169 |
+
nn.Linear(self.feature_size, 256),
|
| 170 |
+
nn.BatchNorm1d(256),
|
| 171 |
+
nn.ReLU(inplace=True),
|
| 172 |
+
nn.Dropout(dropout_rate),
|
| 173 |
+
nn.Linear(256, 128),
|
| 174 |
+
nn.BatchNorm1d(128),
|
| 175 |
+
nn.ReLU(inplace=True),
|
| 176 |
+
nn.Dropout(dropout_rate),
|
| 177 |
+
nn.Linear(128, 64),
|
| 178 |
+
nn.BatchNorm1d(64),
|
| 179 |
+
nn.ReLU(inplace=True),
|
| 180 |
+
nn.Dropout(dropout_rate / 2),
|
| 181 |
+
nn.Linear(64, num_classes),
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Initialize weights
|
| 185 |
+
self._initialize_weights()
|
| 186 |
+
|
| 187 |
+
def _initialize_weights(self):
|
| 188 |
+
"""Initialize model weights using Xavier initialization."""
|
| 189 |
+
for m in self.modules():
|
| 190 |
+
if isinstance(m, nn.Conv1d):
|
| 191 |
+
nn.init.xavier_uniform_(m.weight)
|
| 192 |
+
if m.bias is not None:
|
| 193 |
+
nn.init.constant_(m.bias, 0)
|
| 194 |
+
elif isinstance(m, nn.Linear):
|
| 195 |
+
nn.init.xavier_uniform_(m.weight)
|
| 196 |
+
nn.init.constant_(m.bias, 0)
|
| 197 |
+
elif isinstance(m, nn.BatchNorm1d):
|
| 198 |
+
nn.init.constant_(m.weight, 1)
|
| 199 |
+
nn.init.constant_(m.bias, 0)
|
| 200 |
+
|
| 201 |
+
def forward(self, x):
|
| 202 |
+
# Ensure input is 3D: [batch, channels, length]
|
| 203 |
+
if x.dim() == 2:
|
| 204 |
+
x = x.unsqueeze(1)
|
| 205 |
+
|
| 206 |
+
# Feature extraction
|
| 207 |
+
x = self.initial_conv(x)
|
| 208 |
+
x = self.multiscale_block(x)
|
| 209 |
+
x = self.pool1(x)
|
| 210 |
+
|
| 211 |
+
x = self.res_block1(x)
|
| 212 |
+
x = self.pool2(x)
|
| 213 |
+
|
| 214 |
+
x = self.res_block2(x)
|
| 215 |
+
x = self.pool3(x)
|
| 216 |
+
|
| 217 |
+
x = self.res_block3(x)
|
| 218 |
+
|
| 219 |
+
# Global pooling
|
| 220 |
+
x = self.global_pool(x)
|
| 221 |
+
x = x.view(x.size(0), -1)
|
| 222 |
+
|
| 223 |
+
# Classification
|
| 224 |
+
x = self.classifier(x)
|
| 225 |
+
|
| 226 |
+
return x
|
| 227 |
+
|
| 228 |
+
def get_feature_maps(self, x):
|
| 229 |
+
"""Extract intermediate feature maps for visualization."""
|
| 230 |
+
if x.dim() == 2:
|
| 231 |
+
x = x.unsqueeze(1)
|
| 232 |
+
|
| 233 |
+
features = {}
|
| 234 |
+
|
| 235 |
+
x = self.initial_conv(x)
|
| 236 |
+
features["initial"] = x
|
| 237 |
+
|
| 238 |
+
x = self.multiscale_block(x)
|
| 239 |
+
features["multiscale"] = x
|
| 240 |
+
x = self.pool1(x)
|
| 241 |
+
|
| 242 |
+
x = self.res_block1(x)
|
| 243 |
+
features["res1"] = x
|
| 244 |
+
x = self.pool2(x)
|
| 245 |
+
|
| 246 |
+
x = self.res_block2(x)
|
| 247 |
+
features["res2"] = x
|
| 248 |
+
x = self.pool3(x)
|
| 249 |
+
|
| 250 |
+
x = self.res_block3(x)
|
| 251 |
+
features["res3"] = x
|
| 252 |
+
|
| 253 |
+
return features
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class EfficientSpectralCNN(nn.Module):
|
| 257 |
+
"""Efficient CNN designed for real-time inference with good performance."""
|
| 258 |
+
|
| 259 |
+
def __init__(self, input_length: int = 500, num_classes: int = 2):
|
| 260 |
+
super().__init__()
|
| 261 |
+
|
| 262 |
+
# Efficient feature extraction with depthwise separable convolutions
|
| 263 |
+
self.features = nn.Sequential(
|
| 264 |
+
# Initial convolution
|
| 265 |
+
nn.Conv1d(1, 32, kernel_size=7, padding=3),
|
| 266 |
+
nn.BatchNorm1d(32),
|
| 267 |
+
nn.ReLU(inplace=True),
|
| 268 |
+
nn.MaxPool1d(2),
|
| 269 |
+
# Depthwise separable convolutions
|
| 270 |
+
self._make_depthwise_sep_conv(32, 64),
|
| 271 |
+
nn.MaxPool1d(2),
|
| 272 |
+
self._make_depthwise_sep_conv(64, 96),
|
| 273 |
+
nn.MaxPool1d(2),
|
| 274 |
+
self._make_depthwise_sep_conv(96, 128),
|
| 275 |
+
nn.MaxPool1d(2),
|
| 276 |
+
# Final feature extraction
|
| 277 |
+
nn.Conv1d(128, 160, kernel_size=3, padding=1),
|
| 278 |
+
nn.BatchNorm1d(160),
|
| 279 |
+
nn.ReLU(inplace=True),
|
| 280 |
+
nn.AdaptiveAvgPool1d(1),
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Lightweight classifier
|
| 284 |
+
self.classifier = nn.Sequential(
|
| 285 |
+
nn.Linear(160, 64),
|
| 286 |
+
nn.ReLU(inplace=True),
|
| 287 |
+
nn.Dropout(0.1),
|
| 288 |
+
nn.Linear(64, num_classes),
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
self._initialize_weights()
|
| 292 |
+
|
| 293 |
+
def _make_depthwise_sep_conv(self, in_channels, out_channels):
|
| 294 |
+
"""Create depthwise separable convolution block."""
|
| 295 |
+
return nn.Sequential(
|
| 296 |
+
# Depthwise convolution
|
| 297 |
+
nn.Conv1d(
|
| 298 |
+
in_channels, in_channels, kernel_size=3, padding=1, groups=in_channels
|
| 299 |
+
),
|
| 300 |
+
nn.BatchNorm1d(in_channels),
|
| 301 |
+
nn.ReLU(inplace=True),
|
| 302 |
+
# Pointwise convolution
|
| 303 |
+
nn.Conv1d(in_channels, out_channels, kernel_size=1),
|
| 304 |
+
nn.BatchNorm1d(out_channels),
|
| 305 |
+
nn.ReLU(inplace=True),
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def _initialize_weights(self):
|
| 309 |
+
"""Initialize model weights."""
|
| 310 |
+
for m in self.modules():
|
| 311 |
+
if isinstance(m, nn.Conv1d):
|
| 312 |
+
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
| 313 |
+
if m.bias is not None:
|
| 314 |
+
nn.init.constant_(m.bias, 0)
|
| 315 |
+
elif isinstance(m, nn.Linear):
|
| 316 |
+
nn.init.xavier_uniform_(m.weight)
|
| 317 |
+
nn.init.constant_(m.bias, 0)
|
| 318 |
+
elif isinstance(m, nn.BatchNorm1d):
|
| 319 |
+
nn.init.constant_(m.weight, 1)
|
| 320 |
+
nn.init.constant_(m.bias, 0)
|
| 321 |
+
|
| 322 |
+
def forward(self, x):
|
| 323 |
+
if x.dim() == 2:
|
| 324 |
+
x = x.unsqueeze(1)
|
| 325 |
+
|
| 326 |
+
x = self.features(x)
|
| 327 |
+
x = x.view(x.size(0), -1)
|
| 328 |
+
x = self.classifier(x)
|
| 329 |
+
|
| 330 |
+
return x
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class HybridSpectralNet(nn.Module):
|
| 334 |
+
"""Hybrid network combining CNN and attention mechanisms."""
|
| 335 |
+
|
| 336 |
+
def __init__(self, input_length: int = 500, num_classes: int = 2):
|
| 337 |
+
super().__init__()
|
| 338 |
+
|
| 339 |
+
# CNN backbone
|
| 340 |
+
self.cnn_backbone = nn.Sequential(
|
| 341 |
+
nn.Conv1d(1, 64, kernel_size=7, padding=3),
|
| 342 |
+
nn.BatchNorm1d(64),
|
| 343 |
+
nn.ReLU(inplace=True),
|
| 344 |
+
nn.MaxPool1d(2),
|
| 345 |
+
nn.Conv1d(64, 128, kernel_size=5, padding=2),
|
| 346 |
+
nn.BatchNorm1d(128),
|
| 347 |
+
nn.ReLU(inplace=True),
|
| 348 |
+
nn.MaxPool1d(2),
|
| 349 |
+
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
| 350 |
+
nn.BatchNorm1d(256),
|
| 351 |
+
nn.ReLU(inplace=True),
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Self-attention layer
|
| 355 |
+
self.attention = nn.MultiheadAttention(
|
| 356 |
+
embed_dim=256, num_heads=8, dropout=0.1, batch_first=True
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
# Final pooling and classification
|
| 360 |
+
self.global_pool = nn.AdaptiveAvgPool1d(1)
|
| 361 |
+
self.classifier = nn.Sequential(
|
| 362 |
+
nn.Linear(256, 128),
|
| 363 |
+
nn.ReLU(inplace=True),
|
| 364 |
+
nn.Dropout(0.2),
|
| 365 |
+
nn.Linear(128, num_classes),
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
def forward(self, x):
|
| 369 |
+
if x.dim() == 2:
|
| 370 |
+
x = x.unsqueeze(1)
|
| 371 |
+
|
| 372 |
+
# CNN feature extraction
|
| 373 |
+
x = self.cnn_backbone(x)
|
| 374 |
+
|
| 375 |
+
# Prepare for attention: [batch, length, channels]
|
| 376 |
+
x = x.transpose(1, 2)
|
| 377 |
+
|
| 378 |
+
# Self-attention
|
| 379 |
+
attn_out, _ = self.attention(x, x, x)
|
| 380 |
+
|
| 381 |
+
# Back to [batch, channels, length]
|
| 382 |
+
x = attn_out.transpose(1, 2)
|
| 383 |
+
|
| 384 |
+
# Global pooling and classification
|
| 385 |
+
x = self.global_pool(x)
|
| 386 |
+
x = x.view(x.size(0), -1)
|
| 387 |
+
x = self.classifier(x)
|
| 388 |
+
|
| 389 |
+
return x
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def create_enhanced_model(model_type: str = "enhanced", **kwargs):
|
| 393 |
+
"""Factory function to create enhanced models."""
|
| 394 |
+
models = {
|
| 395 |
+
"enhanced": EnhancedCNN,
|
| 396 |
+
"efficient": EfficientSpectralCNN,
|
| 397 |
+
"hybrid": HybridSpectralNet,
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
if model_type not in models:
|
| 401 |
+
raise ValueError(
|
| 402 |
+
f"Unknown model type: {model_type}. Available: {list(models.keys())}"
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
return models[model_type](**kwargs)
|