Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
Β·
723ebe4
1
Parent(s):
65f2520
(DEPLOY): make app.py portable for HF + canonical
Browse files- Use Agg backend for headless ploting.
- Dual-path import for resample_spectrum (scripts/ then utils/)
- Flexible weights path (WEIGHTS_DIR env -> model_weights -> outputs)
- Detach logits before numpy to avoid autograd refs
- deploy/hf-space/app.py +537 -0
deploy/hf-space/app.py
ADDED
|
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
AI-Driven Polymer Aging Prediction and Classification
|
| 3 |
+
Hugging Face Spaces Deployment
|
| 4 |
+
This is an adapted version of the Streamlit app optimized for Hugging Face Spaces deployment.
|
| 5 |
+
It maintains all the functionality of the original app while being self-contained and cloud-ready.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
# Ensure 'utils' directory is in the Python path
|
| 13 |
+
utils_path = Path(__file__).resolve().parent / "utils"
|
| 14 |
+
if utils_path.is_dir() and str(utils_path) not in sys.path:
|
| 15 |
+
sys.path.append(str(utils_path))
|
| 16 |
+
import streamlit as st
|
| 17 |
+
import torch
|
| 18 |
+
import numpy as np
|
| 19 |
+
import matplotlib
|
| 20 |
+
matplotlib.use("Agg") # ensure headless rendering in Spaces
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
from PIL import Image
|
| 23 |
+
import io
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import time
|
| 26 |
+
import gc
|
| 27 |
+
from io import StringIO
|
| 28 |
+
|
| 29 |
+
# Import local modules
|
| 30 |
+
from models.figure2_cnn import Figure2CNN
|
| 31 |
+
from models.resnet_cnn import ResNet1D
|
| 32 |
+
# Prefer canonical script; fallback to local utils for HF hard-copy scenario
|
| 33 |
+
try:
|
| 34 |
+
from scripts.preprocess_dataset import resample_spectrum
|
| 35 |
+
except ImportError:
|
| 36 |
+
from utils.preprocessing import resample_spectrum
|
| 37 |
+
|
| 38 |
+
# Configuration
|
| 39 |
+
st.set_page_config(
|
| 40 |
+
page_title="ML Polymer Classification",
|
| 41 |
+
page_icon="π¬",
|
| 42 |
+
layout="wide",
|
| 43 |
+
initial_sidebar_state="expanded"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Constants
|
| 47 |
+
TARGET_LEN = 500
|
| 48 |
+
SAMPLE_DATA_DIR = "sample_data"
|
| 49 |
+
# Prefer env var, else 'model_weights' if present; else canonical 'outputs'
|
| 50 |
+
MODEL_WEIGHTS_DIR = (
|
| 51 |
+
os.getenv("WEIGHTS_DIR")
|
| 52 |
+
or ("model_weights" if os.path.isdir("model_weights") else "outputs")
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Model configuration
|
| 56 |
+
MODEL_CONFIG = {
|
| 57 |
+
"Figure2CNN (Baseline)": {
|
| 58 |
+
"class": Figure2CNN,
|
| 59 |
+
"path": f"{MODEL_WEIGHTS_DIR}/figure2_model.pth",
|
| 60 |
+
"emoji": "π¬",
|
| 61 |
+
"description": "Baseline CNN with standard filters",
|
| 62 |
+
"accuracy": "94.80%",
|
| 63 |
+
"f1": "94.30%"
|
| 64 |
+
},
|
| 65 |
+
"ResNet1D (Advanced)": {
|
| 66 |
+
"class": ResNet1D,
|
| 67 |
+
"path": f"{MODEL_WEIGHTS_DIR}/resnet_model.pth",
|
| 68 |
+
"emoji": "π§ ",
|
| 69 |
+
"description": "Residual CNN with deeper feature learning",
|
| 70 |
+
"accuracy": "96.20%",
|
| 71 |
+
"f1": "95.90%"
|
| 72 |
+
}
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
# Label mapping
|
| 76 |
+
LABEL_MAP = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
|
| 77 |
+
|
| 78 |
+
# Utility functions
|
| 79 |
+
def label_file(filename: str) -> int:
|
| 80 |
+
"""Extract label from filename based on naming convention"""
|
| 81 |
+
name = Path(filename).name.lower()
|
| 82 |
+
if name.startswith("sta"):
|
| 83 |
+
return 0
|
| 84 |
+
elif name.startswith("wea"):
|
| 85 |
+
return 1
|
| 86 |
+
else:
|
| 87 |
+
# Return None for unknown patterns instead of raising error
|
| 88 |
+
return -1 # Default value for unknown patterns
|
| 89 |
+
|
| 90 |
+
@st.cache_resource
|
| 91 |
+
def load_model(model_name):
|
| 92 |
+
"""Load and cache the specified model with error handling"""
|
| 93 |
+
try:
|
| 94 |
+
config = MODEL_CONFIG[model_name]
|
| 95 |
+
model_class = config["class"]
|
| 96 |
+
model_path = config["path"]
|
| 97 |
+
|
| 98 |
+
# Initialize model
|
| 99 |
+
model = model_class(input_length=TARGET_LEN)
|
| 100 |
+
|
| 101 |
+
# Check if model file exists
|
| 102 |
+
if not os.path.exists(model_path):
|
| 103 |
+
st.warning(f"β οΈ Model weights not found: {model_path}")
|
| 104 |
+
st.info("Using randomly initialized model for demonstration purposes.")
|
| 105 |
+
return model, False
|
| 106 |
+
|
| 107 |
+
# Load weights
|
| 108 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 109 |
+
model.load_state_dict(state_dict, strict=False)
|
| 110 |
+
model.eval()
|
| 111 |
+
|
| 112 |
+
return model, True
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
st.error(f"β Error loading model {model_name}: {str(e)}")
|
| 116 |
+
return None, False
|
| 117 |
+
|
| 118 |
+
def cleanup_memory():
|
| 119 |
+
"""Clean up memory after inference"""
|
| 120 |
+
gc.collect()
|
| 121 |
+
if torch.cuda.is_available():
|
| 122 |
+
torch.cuda.empty_cache()
|
| 123 |
+
|
| 124 |
+
@st.cache_data
|
| 125 |
+
def get_sample_files():
|
| 126 |
+
"""Get list of sample files if available"""
|
| 127 |
+
sample_dir = Path(SAMPLE_DATA_DIR)
|
| 128 |
+
if sample_dir.exists():
|
| 129 |
+
return sorted(list(sample_dir.glob("*.txt")))
|
| 130 |
+
return []
|
| 131 |
+
|
| 132 |
+
def parse_spectrum_data(raw_text):
|
| 133 |
+
"""Parse spectrum data from text with robust error handling"""
|
| 134 |
+
x_vals, y_vals = [], []
|
| 135 |
+
|
| 136 |
+
for line in raw_text.splitlines():
|
| 137 |
+
line = line.strip()
|
| 138 |
+
if not line or line.startswith('#'): # Skip empty lines and comments
|
| 139 |
+
continue
|
| 140 |
+
|
| 141 |
+
try:
|
| 142 |
+
# Handle different separators
|
| 143 |
+
parts = line.replace(",", " ").split()
|
| 144 |
+
numbers = [p for p in parts if p.replace('.', '', 1).replace('-', '', 1).replace('+', '', 1).isdigit()]
|
| 145 |
+
|
| 146 |
+
if len(numbers) >= 2:
|
| 147 |
+
x, y = float(numbers[0]), float(numbers[1])
|
| 148 |
+
x_vals.append(x)
|
| 149 |
+
y_vals.append(y)
|
| 150 |
+
|
| 151 |
+
except ValueError:
|
| 152 |
+
# Skip problematic lines but don't fail completely
|
| 153 |
+
continue
|
| 154 |
+
|
| 155 |
+
if len(x_vals) < 10: # Minimum reasonable spectrum length
|
| 156 |
+
raise ValueError(f"Insufficient data points: {len(x_vals)}. Need at least 10 points.")
|
| 157 |
+
|
| 158 |
+
return np.array(x_vals), np.array(y_vals)
|
| 159 |
+
|
| 160 |
+
def create_spectrum_plot(x_raw, y_raw, y_resampled):
|
| 161 |
+
"""Create spectrum visualization plot"""
|
| 162 |
+
fig, ax = plt.subplots(1, 2, figsize=(12, 4), dpi=100)
|
| 163 |
+
|
| 164 |
+
# Raw spectrum
|
| 165 |
+
ax[0].plot(x_raw, y_raw, label="Raw", color="dimgray", linewidth=1)
|
| 166 |
+
ax[0].set_title("Raw Input Spectrum")
|
| 167 |
+
ax[0].set_xlabel("Wavenumber (cmβ»ΒΉ)")
|
| 168 |
+
ax[0].set_ylabel("Intensity")
|
| 169 |
+
ax[0].grid(True, alpha=0.3)
|
| 170 |
+
ax[0].legend()
|
| 171 |
+
|
| 172 |
+
# Resampled spectrum
|
| 173 |
+
x_resampled = np.linspace(min(x_raw), max(x_raw), TARGET_LEN)
|
| 174 |
+
ax[1].plot(x_resampled, y_resampled, label="Resampled", color="steelblue", linewidth=1)
|
| 175 |
+
ax[1].set_title(f"Resampled ({TARGET_LEN} points)")
|
| 176 |
+
ax[1].set_xlabel("Wavenumber (cmβ»ΒΉ)")
|
| 177 |
+
ax[1].set_ylabel("Intensity")
|
| 178 |
+
ax[1].grid(True, alpha=0.3)
|
| 179 |
+
ax[1].legend()
|
| 180 |
+
|
| 181 |
+
plt.tight_layout()
|
| 182 |
+
|
| 183 |
+
# Convert to image
|
| 184 |
+
buf = io.BytesIO()
|
| 185 |
+
plt.savefig(buf, format='png', bbox_inches='tight', dpi=100)
|
| 186 |
+
buf.seek(0)
|
| 187 |
+
plt.close(fig) # Prevent memory leaks
|
| 188 |
+
|
| 189 |
+
return Image.open(buf)
|
| 190 |
+
|
| 191 |
+
def get_confidence_description(logit_margin):
|
| 192 |
+
"""Get human-readable confidence description"""
|
| 193 |
+
if logit_margin > 1000:
|
| 194 |
+
return "VERY HIGH", "π’"
|
| 195 |
+
elif logit_margin > 250:
|
| 196 |
+
return "HIGH", "π‘"
|
| 197 |
+
elif logit_margin > 100:
|
| 198 |
+
return "MODERATE", "π "
|
| 199 |
+
else:
|
| 200 |
+
return "LOW", "π΄"
|
| 201 |
+
|
| 202 |
+
# Initialize session state
|
| 203 |
+
def init_session_state():
|
| 204 |
+
"""Initialize session state variables"""
|
| 205 |
+
defaults = {
|
| 206 |
+
'status_message': "Ready to analyze polymer spectra π¬",
|
| 207 |
+
'status_type': "info",
|
| 208 |
+
'uploaded_file': None,
|
| 209 |
+
'filename': None,
|
| 210 |
+
'inference_run_once': False,
|
| 211 |
+
'x_raw': None,
|
| 212 |
+
'y_raw': None,
|
| 213 |
+
'y_resampled': None
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
for key, default_value in defaults.items():
|
| 217 |
+
if key not in st.session_state:
|
| 218 |
+
st.session_state[key] = default_value
|
| 219 |
+
|
| 220 |
+
# Main app
|
| 221 |
+
def main():
|
| 222 |
+
init_session_state()
|
| 223 |
+
|
| 224 |
+
# Header
|
| 225 |
+
st.title("π¬ AI-Driven Polymer Classification")
|
| 226 |
+
st.markdown("**Predict polymer degradation states using Raman spectroscopy and deep learning**")
|
| 227 |
+
|
| 228 |
+
# Sidebar
|
| 229 |
+
with st.sidebar:
|
| 230 |
+
st.header("βΉοΈ About This App")
|
| 231 |
+
st.markdown("""
|
| 232 |
+
**AIRE 2025 Internship Project**
|
| 233 |
+
AI-Driven Polymer Aging Prediction and Classification
|
| 234 |
+
|
| 235 |
+
π― **Purpose**: Classify polymer degradation using AI
|
| 236 |
+
π **Input**: Raman spectroscopy data
|
| 237 |
+
π§ **Models**: CNN architectures for binary classification
|
| 238 |
+
|
| 239 |
+
**Team**:
|
| 240 |
+
- **Mentor**: Dr. Sanmukh Kuppannagari
|
| 241 |
+
- **Mentor**: Dr. Metin Karailyan
|
| 242 |
+
- **Author**: Jaser Hasan
|
| 243 |
+
|
| 244 |
+
π [GitHub Repository](https://github.com/KLab-AI3/ml-polymer-recycling)
|
| 245 |
+
""")
|
| 246 |
+
|
| 247 |
+
st.markdown("---")
|
| 248 |
+
|
| 249 |
+
# Model selection
|
| 250 |
+
st.subheader("π§ Model Selection")
|
| 251 |
+
model_labels = [f"{MODEL_CONFIG[name]['emoji']} {name}" for name in MODEL_CONFIG.keys()]
|
| 252 |
+
selected_label = st.selectbox("Choose AI model:", model_labels)
|
| 253 |
+
model_choice = selected_label.split(" ", 1)[1]
|
| 254 |
+
|
| 255 |
+
# Model info
|
| 256 |
+
config = MODEL_CONFIG[model_choice]
|
| 257 |
+
st.markdown(f"""
|
| 258 |
+
**π {config['emoji']} Model Details**
|
| 259 |
+
|
| 260 |
+
*{config['description']}*
|
| 261 |
+
|
| 262 |
+
- **Accuracy**: `{config['accuracy']}`
|
| 263 |
+
- **F1 Score**: `{config['f1']}`
|
| 264 |
+
""")
|
| 265 |
+
|
| 266 |
+
# Main content area
|
| 267 |
+
col1, col2 = st.columns([1, 1.5], gap="large")
|
| 268 |
+
|
| 269 |
+
with col1:
|
| 270 |
+
st.subheader("π Data Input")
|
| 271 |
+
|
| 272 |
+
# File upload tabs
|
| 273 |
+
tab1, tab2 = st.tabs(["π€ Upload File", "π§ͺ Sample Data"])
|
| 274 |
+
|
| 275 |
+
uploaded_file = None
|
| 276 |
+
|
| 277 |
+
with tab1:
|
| 278 |
+
uploaded_file = st.file_uploader(
|
| 279 |
+
"Upload Raman spectrum (.txt)",
|
| 280 |
+
type="txt",
|
| 281 |
+
help="Upload a text file with wavenumber and intensity columns"
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
if uploaded_file:
|
| 285 |
+
st.success(f"β
Loaded: {uploaded_file.name}")
|
| 286 |
+
|
| 287 |
+
with tab2:
|
| 288 |
+
sample_files = get_sample_files()
|
| 289 |
+
if sample_files:
|
| 290 |
+
sample_options = ["-- Select Sample --"] + [f.name for f in sample_files]
|
| 291 |
+
selected_sample = st.selectbox("Choose sample spectrum:", sample_options)
|
| 292 |
+
|
| 293 |
+
if selected_sample != "-- Select Sample --":
|
| 294 |
+
selected_path = Path(SAMPLE_DATA_DIR) / selected_sample
|
| 295 |
+
try:
|
| 296 |
+
with open(selected_path, "r", encoding="utf-8") as f:
|
| 297 |
+
file_contents = f.read()
|
| 298 |
+
uploaded_file = StringIO(file_contents)
|
| 299 |
+
uploaded_file.name = selected_sample
|
| 300 |
+
st.success(f"β
Loaded sample: {selected_sample}")
|
| 301 |
+
except Exception as e:
|
| 302 |
+
st.error(f"Error loading sample: {e}")
|
| 303 |
+
else:
|
| 304 |
+
st.info("No sample data available")
|
| 305 |
+
|
| 306 |
+
# Update session state
|
| 307 |
+
if uploaded_file is not None:
|
| 308 |
+
st.session_state['uploaded_file'] = uploaded_file
|
| 309 |
+
st.session_state['filename'] = uploaded_file.name
|
| 310 |
+
st.session_state['status_message'] = f"π File '{uploaded_file.name}' ready for analysis"
|
| 311 |
+
st.session_state['status_type'] = "success"
|
| 312 |
+
|
| 313 |
+
# Status display
|
| 314 |
+
st.subheader("π¦ Status")
|
| 315 |
+
status_msg = st.session_state.get("status_message", "Ready")
|
| 316 |
+
status_type = st.session_state.get("status_type", "info")
|
| 317 |
+
|
| 318 |
+
if status_type == "success":
|
| 319 |
+
st.success(status_msg)
|
| 320 |
+
elif status_type == "error":
|
| 321 |
+
st.error(status_msg)
|
| 322 |
+
else:
|
| 323 |
+
st.info(status_msg)
|
| 324 |
+
|
| 325 |
+
# Load model
|
| 326 |
+
model, model_loaded = load_model(model_choice)
|
| 327 |
+
|
| 328 |
+
# Inference button
|
| 329 |
+
inference_ready = (
|
| 330 |
+
'uploaded_file' in st.session_state and
|
| 331 |
+
st.session_state['uploaded_file'] is not None and
|
| 332 |
+
model is not None
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
if not model_loaded:
|
| 336 |
+
st.warning("β οΈ Model weights not available - using demo mode")
|
| 337 |
+
|
| 338 |
+
if st.button("βΆοΈ Run Analysis", disabled=not inference_ready, type="primary"):
|
| 339 |
+
if inference_ready:
|
| 340 |
+
try:
|
| 341 |
+
# Get file data
|
| 342 |
+
uploaded_file = st.session_state['uploaded_file']
|
| 343 |
+
filename = st.session_state['filename']
|
| 344 |
+
|
| 345 |
+
# Read file content
|
| 346 |
+
uploaded_file.seek(0)
|
| 347 |
+
raw_data = uploaded_file.read()
|
| 348 |
+
raw_text = raw_data.decode("utf-8") if isinstance(raw_data, bytes) else raw_data
|
| 349 |
+
|
| 350 |
+
# Parse spectrum
|
| 351 |
+
with st.spinner("Parsing spectrum data..."):
|
| 352 |
+
x_raw, y_raw = parse_spectrum_data(raw_text)
|
| 353 |
+
|
| 354 |
+
# Resample spectrum
|
| 355 |
+
with st.spinner("Resampling spectrum..."):
|
| 356 |
+
y_resampled = resample_spectrum(x_raw, y_raw, TARGET_LEN)
|
| 357 |
+
|
| 358 |
+
# Store in session state
|
| 359 |
+
st.session_state['x_raw'] = x_raw
|
| 360 |
+
st.session_state['y_raw'] = y_raw
|
| 361 |
+
st.session_state['y_resampled'] = y_resampled
|
| 362 |
+
st.session_state['inference_run_once'] = True
|
| 363 |
+
st.session_state['status_message'] = f"π Analysis completed for: {filename}"
|
| 364 |
+
st.session_state['status_type'] = "success"
|
| 365 |
+
|
| 366 |
+
st.rerun()
|
| 367 |
+
|
| 368 |
+
except Exception as e:
|
| 369 |
+
st.error(f"β Analysis failed: {str(e)}")
|
| 370 |
+
st.session_state['status_message'] = f"β Error: {str(e)}"
|
| 371 |
+
st.session_state['status_type'] = "error"
|
| 372 |
+
|
| 373 |
+
# Results column
|
| 374 |
+
with col2:
|
| 375 |
+
if st.session_state.get("inference_run_once", False):
|
| 376 |
+
st.subheader("π Analysis Results")
|
| 377 |
+
|
| 378 |
+
# Get data from session state
|
| 379 |
+
x_raw = st.session_state.get('x_raw')
|
| 380 |
+
y_raw = st.session_state.get('y_raw')
|
| 381 |
+
y_resampled = st.session_state.get('y_resampled')
|
| 382 |
+
filename = st.session_state.get('filename', 'Unknown')
|
| 383 |
+
|
| 384 |
+
if all(v is not None for v in [x_raw, y_raw, y_resampled]):
|
| 385 |
+
|
| 386 |
+
# Create and display plot
|
| 387 |
+
try:
|
| 388 |
+
spectrum_plot = create_spectrum_plot(x_raw, y_raw, y_resampled)
|
| 389 |
+
st.image(spectrum_plot, caption="Spectrum Preprocessing Results", use_column_width=True)
|
| 390 |
+
except Exception as e:
|
| 391 |
+
st.warning(f"Could not generate plot: {e}")
|
| 392 |
+
|
| 393 |
+
# Run inference
|
| 394 |
+
try:
|
| 395 |
+
with st.spinner("Running AI inference..."):
|
| 396 |
+
start_time = time.time()
|
| 397 |
+
|
| 398 |
+
# Prepare input tensor
|
| 399 |
+
input_tensor = torch.tensor(y_resampled, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
| 400 |
+
|
| 401 |
+
# Run inference
|
| 402 |
+
model.eval()
|
| 403 |
+
with torch.no_grad():
|
| 404 |
+
if model is None:
|
| 405 |
+
raise ValueError("Model is not loaded. Please check the model configuration or weights.")
|
| 406 |
+
logits = model(input_tensor)
|
| 407 |
+
prediction = torch.argmax(logits, dim=1).item()
|
| 408 |
+
logits_list = logits.detach().numpy().tolist()[0]
|
| 409 |
+
|
| 410 |
+
inference_time = time.time() - start_time
|
| 411 |
+
|
| 412 |
+
# Clean up memory
|
| 413 |
+
cleanup_memory()
|
| 414 |
+
|
| 415 |
+
# Get ground truth if available
|
| 416 |
+
true_label_idx = label_file(filename)
|
| 417 |
+
true_label_str = LABEL_MAP.get(true_label_idx, "Unknown") if true_label_idx is not None else "Unknown"
|
| 418 |
+
|
| 419 |
+
# Get prediction
|
| 420 |
+
predicted_class = LABEL_MAP.get(int(prediction), f"Class {int(prediction)}")
|
| 421 |
+
|
| 422 |
+
# Calculate confidence metrics
|
| 423 |
+
logit_margin = abs(logits_list[0] - logits_list[1]) if len(logits_list) >= 2 else 0
|
| 424 |
+
confidence_desc, confidence_emoji = get_confidence_description(logit_margin)
|
| 425 |
+
|
| 426 |
+
# Display results
|
| 427 |
+
st.markdown("### π― Prediction Results")
|
| 428 |
+
|
| 429 |
+
# Main prediction
|
| 430 |
+
st.markdown(f"""
|
| 431 |
+
**π¬ Sample**: `{filename}`
|
| 432 |
+
**π§ Model**: `{model_choice}`
|
| 433 |
+
**β±οΈ Processing Time**: `{inference_time:.2f}s`
|
| 434 |
+
""")
|
| 435 |
+
|
| 436 |
+
# Prediction box
|
| 437 |
+
if predicted_class == "Stable (Unweathered)":
|
| 438 |
+
st.success(f"π’ **Prediction**: {predicted_class}")
|
| 439 |
+
else:
|
| 440 |
+
st.warning(f"π‘ **Prediction**: {predicted_class}")
|
| 441 |
+
|
| 442 |
+
# Confidence
|
| 443 |
+
st.markdown(f"**{confidence_emoji} Confidence**: {confidence_desc} (margin: {logit_margin:.1f})")
|
| 444 |
+
|
| 445 |
+
# Ground truth comparison
|
| 446 |
+
if true_label_idx is not None:
|
| 447 |
+
if predicted_class == true_label_str:
|
| 448 |
+
st.success(f"β
**Ground Truth**: {true_label_str} - **Correct!**")
|
| 449 |
+
else:
|
| 450 |
+
st.error(f"β **Ground Truth**: {true_label_str} - **Incorrect**")
|
| 451 |
+
else:
|
| 452 |
+
st.info("βΉοΈ **Ground Truth**: Unknown (filename doesn't follow naming convention)")
|
| 453 |
+
|
| 454 |
+
# Detailed results tabs
|
| 455 |
+
tab1, tab2, tab3 = st.tabs(["π Details", "π¬ Technical", "π Explanation"])
|
| 456 |
+
|
| 457 |
+
with tab1:
|
| 458 |
+
st.markdown("**Model Output (Logits)**")
|
| 459 |
+
for i, score in enumerate(logits_list):
|
| 460 |
+
label = LABEL_MAP.get(i, f"Class {i}")
|
| 461 |
+
st.metric(label, f"{score:.2f}")
|
| 462 |
+
|
| 463 |
+
st.markdown("**Spectrum Statistics**")
|
| 464 |
+
st.json({
|
| 465 |
+
"Original Length": len(x_raw),
|
| 466 |
+
"Resampled Length": TARGET_LEN,
|
| 467 |
+
"Wavenumber Range": f"{min(x_raw):.1f} - {max(x_raw):.1f} cmβ»ΒΉ",
|
| 468 |
+
"Intensity Range": f"{min(y_raw):.1f} - {max(y_raw):.1f}",
|
| 469 |
+
"Model Confidence": confidence_desc
|
| 470 |
+
})
|
| 471 |
+
|
| 472 |
+
with tab2:
|
| 473 |
+
st.markdown("**Technical Information**")
|
| 474 |
+
st.json({
|
| 475 |
+
"Model Architecture": model_choice,
|
| 476 |
+
"Input Shape": list(input_tensor.shape),
|
| 477 |
+
"Output Shape": list(logits.shape),
|
| 478 |
+
"Inference Time": f"{inference_time:.3f}s",
|
| 479 |
+
"Device": "CPU",
|
| 480 |
+
"Model Loaded": model_loaded
|
| 481 |
+
})
|
| 482 |
+
|
| 483 |
+
if not model_loaded:
|
| 484 |
+
st.warning("β οΈ Demo mode: Using randomly initialized weights")
|
| 485 |
+
|
| 486 |
+
with tab3:
|
| 487 |
+
st.markdown("""
|
| 488 |
+
**π Analysis Process**
|
| 489 |
+
|
| 490 |
+
1. **Data Upload**: Raman spectrum file loaded
|
| 491 |
+
2. **Preprocessing**: Data parsed and resampled to 500 points
|
| 492 |
+
3. **AI Inference**: CNN model analyzes spectral patterns
|
| 493 |
+
4. **Classification**: Binary prediction with confidence scores
|
| 494 |
+
|
| 495 |
+
**π§ Model Interpretation**
|
| 496 |
+
|
| 497 |
+
The AI model identifies spectral features indicative of:
|
| 498 |
+
- **Stable polymers**: Well-preserved molecular structure
|
| 499 |
+
- **Weathered polymers**: Degraded/oxidized molecular bonds
|
| 500 |
+
|
| 501 |
+
**π― Applications**
|
| 502 |
+
|
| 503 |
+
- Material longevity assessment
|
| 504 |
+
- Recycling viability evaluation
|
| 505 |
+
- Quality control in manufacturing
|
| 506 |
+
- Environmental impact studies
|
| 507 |
+
""")
|
| 508 |
+
|
| 509 |
+
except Exception as e:
|
| 510 |
+
st.error(f"β Inference failed: {str(e)}")
|
| 511 |
+
|
| 512 |
+
else:
|
| 513 |
+
st.error("β Missing spectrum data. Please upload a file and run analysis.")
|
| 514 |
+
else:
|
| 515 |
+
# Welcome message
|
| 516 |
+
st.markdown("""
|
| 517 |
+
### π Welcome to AI Polymer Classification
|
| 518 |
+
|
| 519 |
+
**Get started by:**
|
| 520 |
+
1. π§ Select an AI model in the sidebar
|
| 521 |
+
2. π Upload a Raman spectrum file or choose a sample
|
| 522 |
+
3. βΆοΈ Click "Run Analysis" to get predictions
|
| 523 |
+
|
| 524 |
+
**Supported formats:**
|
| 525 |
+
- Text files (.txt) with wavenumber and intensity columns
|
| 526 |
+
- Space or comma-separated values
|
| 527 |
+
- Any length (automatically resampled to 500 points)
|
| 528 |
+
|
| 529 |
+
**Example applications:**
|
| 530 |
+
- π¬ Research on polymer degradation
|
| 531 |
+
- β»οΈ Recycling feasibility assessment
|
| 532 |
+
- π± Sustainability impact studies
|
| 533 |
+
- π Quality control in manufacturing
|
| 534 |
+
""")
|
| 535 |
+
|
| 536 |
+
# Run the application
|
| 537 |
+
main()
|