Spaces:
Sleeping
FEAT(spectroscopy): Develop advanced multi-modal processing engine
Browse files- Implements a sophisticated framework for processing and fusing multi-modal spectroscopy data, including FTIR, ATR-FTIR, and Raman.
- Introduces the `AdvancedPreprocessor` class, which provides a comprehensive suite of tools for spectral data enhancement:
- **Baseline Correction:** Advanced algorithms including airPLS, ALS, polynomial fitting, and rolling ball methods. - **Normalization:** Multiple strategies such as vector, min-max, standard (Z-score), area, and peak normalization.
- **Denoising:** A range of noise reduction filters including Savitzky-Golay, Gaussian, median, and Wiener filters.
- **Technique-Specific Adjustments:** Includes specialized corrections for ATR, Raman (cosmic ray and fluorescence), and standard FTIR (atmospheric compensation). Features the `MultiModalSpectroscopyEngine` for integrated analysis:
- **Data Fusion:** Implements strategies for combining data from multiple spectral sources, including concatenation, weighted averaging, PCA-based fusion, and an attention mechanism.
- **Quality Assessment:** A spectral quality scoring system to evaluate signal-to-noise ratio, peak prominence, and baseline stability.
- **Automated Recommendations:** Provides intelligent recommendations for the most suitable spectroscopy techniques based on sample type.
- Defines clear data structures for spectroscopy types and their characteristics, ensuring a well-organized and extensible module.
- modules/advanced_spectroscopy.py +845 -0
|
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Advanced Spectroscopy Integration Module
|
| 2 |
+
Support dual FTIR + Raman spectroscopy with ATR-FTIR integration"""
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from scipy.integrate import trapz
|
| 6 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from scipy import signal
|
| 9 |
+
import scipy.sparse as sparse
|
| 10 |
+
from scipy.sparse.linalg import spsolve
|
| 11 |
+
from scipy.interpolate import interp1d
|
| 12 |
+
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
| 13 |
+
from sklearn.decomposition import PCA
|
| 14 |
+
from scipy.signal import find_peaks
|
| 15 |
+
from scipy.ndimage import gaussian_filter1d
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class SpectroscopyType:
|
| 20 |
+
"""Define spectroscopy types and their characteristics"""
|
| 21 |
+
|
| 22 |
+
FTIR = "FTIR"
|
| 23 |
+
ATR_FTIR = "ATR-FTIR"
|
| 24 |
+
RAMAN = "Raman"
|
| 25 |
+
TRANSMISSION_FTIR = "Transmission-FTIR"
|
| 26 |
+
REFLECTION_FTIR = "Reflection-FTIR"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class SpectralCharacteristics:
|
| 31 |
+
"""Characteristics of different spectroscopy techniques"""
|
| 32 |
+
|
| 33 |
+
technique: str
|
| 34 |
+
wavenumber_range: Tuple[float, float] # cm-1
|
| 35 |
+
typical_resolution: float # cm-1
|
| 36 |
+
sample_requirements: str
|
| 37 |
+
penetration_depth: Optional[str] = None
|
| 38 |
+
advantages: Optional[List[str]] = None
|
| 39 |
+
limitations: Optional[List[str]] = None
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Define characteristics for each technique
|
| 43 |
+
SPECTRAL_CHARACTERISTICS = {
|
| 44 |
+
SpectroscopyType.FTIR: SpectralCharacteristics(
|
| 45 |
+
technique="FTIR",
|
| 46 |
+
wavenumber_range=(400.0, 4000.0),
|
| 47 |
+
typical_resolution=4.0,
|
| 48 |
+
sample_requirements="Various (solid, liquid, gas)",
|
| 49 |
+
penetration_depth="Variable",
|
| 50 |
+
advantages=["High spectral resolution", "Wide range", "Quantitative"],
|
| 51 |
+
limitations=["Water interference", "Sample preparation"],
|
| 52 |
+
),
|
| 53 |
+
SpectroscopyType.ATR_FTIR: SpectralCharacteristics(
|
| 54 |
+
technique="ATR-FTIR",
|
| 55 |
+
wavenumber_range=(600.0, 4000.0),
|
| 56 |
+
typical_resolution=4.0,
|
| 57 |
+
sample_requirements="Direct solid contact",
|
| 58 |
+
penetration_depth="0.5-2 μm",
|
| 59 |
+
advantages=["Minimal sample prep", "Solid samples", "Quick analysis"],
|
| 60 |
+
limitations=["Surface analysis only", "Pressure sensitive"],
|
| 61 |
+
),
|
| 62 |
+
SpectroscopyType.RAMAN: SpectralCharacteristics(
|
| 63 |
+
technique="Raman",
|
| 64 |
+
wavenumber_range=(200, 3500),
|
| 65 |
+
typical_resolution=1.0,
|
| 66 |
+
sample_requirements="Various (solid, liquid)",
|
| 67 |
+
penetration_depth="Variable",
|
| 68 |
+
advantages=["Water compatible", "Non-destructive", "Molecular vibrations"],
|
| 69 |
+
limitations=["Fluorescence interference", "Weak signals"],
|
| 70 |
+
),
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class AdvancedPreprocessor:
|
| 75 |
+
"""Advanced preprocessing pipeline for multi-modal spectroscopy data"""
|
| 76 |
+
|
| 77 |
+
def __init__(self):
|
| 78 |
+
self.techniques_applied = []
|
| 79 |
+
self.preprocessing_log = []
|
| 80 |
+
|
| 81 |
+
def baseline_correction(
|
| 82 |
+
self,
|
| 83 |
+
wavenumber: np.ndarray,
|
| 84 |
+
intensities: np.ndarray,
|
| 85 |
+
method: str = "airpls",
|
| 86 |
+
**kwargs,
|
| 87 |
+
) -> Tuple[np.ndarray, Dict]:
|
| 88 |
+
"""
|
| 89 |
+
Advanced baseline correction methods
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
wavenumber: Wavenumber array
|
| 93 |
+
intensities: Intensity array
|
| 94 |
+
method: Baseline correction method ('airpls', 'als', 'polynomial', 'rolling_ball')
|
| 95 |
+
**kwargs: Method-specific parameters
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
Corrected intensities and processing metadata
|
| 99 |
+
"""
|
| 100 |
+
metadata = {
|
| 101 |
+
"method": method,
|
| 102 |
+
"original_range": (intensities.min(), intensities.max()),
|
| 103 |
+
}
|
| 104 |
+
corrected_intensities = intensities.copy()
|
| 105 |
+
|
| 106 |
+
if method == "airpls":
|
| 107 |
+
corrected_intensities = self._airpls_baseline(intensities, **kwargs)
|
| 108 |
+
elif method == "als":
|
| 109 |
+
corrected_intensities = self._als_baseline(intensities, **kwargs)
|
| 110 |
+
elif method == "polynomial":
|
| 111 |
+
degree = kwargs.get("degree", 3)
|
| 112 |
+
coeffs = np.polyfit(wavenumber, intensities, degree)
|
| 113 |
+
baseline = np.polyval(coeffs, wavenumber)
|
| 114 |
+
corrected_intensities = intensities - baseline
|
| 115 |
+
metadata["polynomial_degree"] = degree
|
| 116 |
+
elif method == "rolling_ball":
|
| 117 |
+
ball_radius = kwargs.get("radius", 50)
|
| 118 |
+
corrected_intensities = self._rolling_ball_baseline(
|
| 119 |
+
intensities, ball_radius
|
| 120 |
+
)
|
| 121 |
+
metadata["ball_radius"] = ball_radius
|
| 122 |
+
|
| 123 |
+
self.preprocessing_log.append(f"Baseline correction: {method}")
|
| 124 |
+
metadata["corrected_range"] = (
|
| 125 |
+
corrected_intensities.min(),
|
| 126 |
+
corrected_intensities.max(),
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
return corrected_intensities, metadata
|
| 130 |
+
|
| 131 |
+
def _airpls_baseline(
|
| 132 |
+
self, y: np.ndarray, lambda_: float = 1e4, itermax: int = 15
|
| 133 |
+
) -> np.ndarray:
|
| 134 |
+
"""
|
| 135 |
+
Adaptive Iteratively Reweighted Penalized Least Squares baseline correction
|
| 136 |
+
"""
|
| 137 |
+
m = len(y)
|
| 138 |
+
D = sparse.diags([1, -2, 1], offsets=[0, -1, -2], shape=(m, m - 2))
|
| 139 |
+
D = lambda_ * D.dot(D.transpose())
|
| 140 |
+
w = np.ones(m)
|
| 141 |
+
|
| 142 |
+
for i in range(itermax):
|
| 143 |
+
W = sparse.spdiags(w, 0, m, m)
|
| 144 |
+
Z = W + D
|
| 145 |
+
z = spsolve(Z, w * y)
|
| 146 |
+
d = y - z
|
| 147 |
+
dn = d[d < 0]
|
| 148 |
+
|
| 149 |
+
m_dn = np.mean(dn) if len(dn) > 0 else 0
|
| 150 |
+
s_dn = np.std(dn) if len(dn) > 1 else 1
|
| 151 |
+
|
| 152 |
+
wt = 1.0 / (1 + np.exp(2 * (d - (2 * s_dn - m_dn)) / s_dn))
|
| 153 |
+
|
| 154 |
+
if np.linalg.norm(w - wt) / np.linalg.norm(w) < 1e-9:
|
| 155 |
+
break
|
| 156 |
+
w = wt
|
| 157 |
+
|
| 158 |
+
z = spsolve(sparse.spdiags(w, 0, m, m) + D, w * y)
|
| 159 |
+
return y - z
|
| 160 |
+
|
| 161 |
+
def _als_baseline(
|
| 162 |
+
self, y: np.ndarray, lambda_: float = 1e4, p: float = 0.001
|
| 163 |
+
) -> np.ndarray:
|
| 164 |
+
"""
|
| 165 |
+
Asymmetric Least Squares baseline correction
|
| 166 |
+
"""
|
| 167 |
+
m = len(y)
|
| 168 |
+
D = sparse.diags([1, -2, 1], [0, -1, -2], shape=(m, m - 2))
|
| 169 |
+
D_t_D = D.dot(D.transpose())
|
| 170 |
+
w = np.ones(m)
|
| 171 |
+
|
| 172 |
+
for _ in range(10):
|
| 173 |
+
W = sparse.spdiags(w, 0, m, m)
|
| 174 |
+
Z = W + lambda_ * D_t_D
|
| 175 |
+
z = spsolve(Z, w * y)
|
| 176 |
+
w = p * (y > z) + (1 - p) * (y < z)
|
| 177 |
+
|
| 178 |
+
return y - z
|
| 179 |
+
|
| 180 |
+
def _rolling_ball_baseline(self, y: np.ndarray, radius: int) -> np.ndarray:
|
| 181 |
+
"""
|
| 182 |
+
Rolling ball baseline correction
|
| 183 |
+
"""
|
| 184 |
+
n = len(y)
|
| 185 |
+
baseline = np.zeros_like(y)
|
| 186 |
+
|
| 187 |
+
for i in range(n):
|
| 188 |
+
start = max(0, i - radius)
|
| 189 |
+
end = min(n, i + radius + 1)
|
| 190 |
+
baseline[i] = np.min(y[start:end])
|
| 191 |
+
|
| 192 |
+
return y - baseline
|
| 193 |
+
|
| 194 |
+
def normalization(
|
| 195 |
+
self,
|
| 196 |
+
wavenumbers: np.ndarray,
|
| 197 |
+
intensities: np.ndarray,
|
| 198 |
+
method: str = "vector",
|
| 199 |
+
**kwargs,
|
| 200 |
+
) -> Tuple[np.ndarray, Dict]:
|
| 201 |
+
"""
|
| 202 |
+
Advanced normalization methods for spectroscopy data
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
wavenumbers: Wavenumber array
|
| 206 |
+
intensities: Intensity array
|
| 207 |
+
method: Normalization method ('vector', 'min_max', 'standard', 'area', 'peak')
|
| 208 |
+
**kwargs: Method-specific parameters
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
Normalized intensities and processing metadata
|
| 212 |
+
"""
|
| 213 |
+
normalized_intensities = intensities.copy()
|
| 214 |
+
metadata = {"method": method, "original_std": np.std(intensities)}
|
| 215 |
+
|
| 216 |
+
if method == "vector":
|
| 217 |
+
norm = np.linalg.norm(intensities)
|
| 218 |
+
normalized_intensities = intensities / norm if norm > 0 else intensities
|
| 219 |
+
metadata["norm_value"] = norm
|
| 220 |
+
elif method == "min_max":
|
| 221 |
+
scaler = MinMaxScaler()
|
| 222 |
+
normalized_intensities = scaler.fit_transform(
|
| 223 |
+
intensities.reshape(-1, 1)
|
| 224 |
+
).flatten()
|
| 225 |
+
metadata["min_value"] = scaler.data_min_[0]
|
| 226 |
+
metadata["max_value"] = scaler.data_max_[0]
|
| 227 |
+
elif method == "standard":
|
| 228 |
+
scaler = StandardScaler()
|
| 229 |
+
normalized_intensities = scaler.fit_transform(
|
| 230 |
+
intensities.reshape(-1, 1)
|
| 231 |
+
).flatten()
|
| 232 |
+
metadata["mean"] = scaler.mean_[0] if scaler.mean_ is not None else None
|
| 233 |
+
metadata["std"] = scaler.scale_[0] if scaler.scale_ is not None else None
|
| 234 |
+
elif method == "area":
|
| 235 |
+
area = trapz(np.abs(intensities), wavenumbers)
|
| 236 |
+
normalized_intensities = intensities / area if area > 0 else intensities
|
| 237 |
+
metadata["area"] = area
|
| 238 |
+
elif method == "peak":
|
| 239 |
+
peak_idx = kwargs.get("peak_idx", np.argmax(np.abs(intensities)))
|
| 240 |
+
peak_value = intensities[peak_idx]
|
| 241 |
+
normalized_intensities = (
|
| 242 |
+
intensities / peak_value if peak_value != 0 else intensities
|
| 243 |
+
)
|
| 244 |
+
metadata["peak_wavenumber"] = wavenumbers[peak_idx]
|
| 245 |
+
metadata["peak_value"] = peak_value
|
| 246 |
+
|
| 247 |
+
self.preprocessing_log.append(f"Normalization: {method}")
|
| 248 |
+
metadata["normalized_std"] = np.std(normalized_intensities)
|
| 249 |
+
|
| 250 |
+
return normalized_intensities, metadata
|
| 251 |
+
|
| 252 |
+
def noise_reduction(
|
| 253 |
+
self,
|
| 254 |
+
wavenumbers: np.ndarray,
|
| 255 |
+
intensities: np.ndarray,
|
| 256 |
+
method: str = "savgol",
|
| 257 |
+
**kwargs,
|
| 258 |
+
) -> Tuple[np.ndarray, Dict]:
|
| 259 |
+
"""
|
| 260 |
+
Advanced noise reduction techniques
|
| 261 |
+
|
| 262 |
+
Args:
|
| 263 |
+
wavenumbers: Wavenumber array
|
| 264 |
+
intensities: Intensity array
|
| 265 |
+
method: Denoising method ('savgol', 'wiener', 'median', 'gaussian')
|
| 266 |
+
**kwargs: Method-specific parameters
|
| 267 |
+
|
| 268 |
+
Returns:
|
| 269 |
+
Reduced intensities and processing metadata
|
| 270 |
+
"""
|
| 271 |
+
denoised_intensities = intensities.copy()
|
| 272 |
+
metadata = {
|
| 273 |
+
"method": method,
|
| 274 |
+
"original_noise_level": np.std(np.diff(intensities)),
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
if method == "savgol":
|
| 278 |
+
window_length = kwargs.get("window_length", 11)
|
| 279 |
+
polyorder = kwargs.get("polyorder", 3)
|
| 280 |
+
|
| 281 |
+
if window_length % 2 == 0:
|
| 282 |
+
window_length += 1
|
| 283 |
+
window_length = max(window_length, polyorder + 1)
|
| 284 |
+
window_length = min(window_length, len(intensities) - 1)
|
| 285 |
+
|
| 286 |
+
if window_length >= 3:
|
| 287 |
+
denoised_intensities = signal.savgol_filter(
|
| 288 |
+
intensities, window_length, polyorder
|
| 289 |
+
)
|
| 290 |
+
metadata["window_length"] = window_length
|
| 291 |
+
metadata["polyorder"] = polyorder
|
| 292 |
+
elif method == "gaussian":
|
| 293 |
+
sigma = kwargs.get("sigma", 1.0) # Default value for sigma
|
| 294 |
+
denoised_intensities = gaussian_filter1d(intensities, sigma)
|
| 295 |
+
metadata["sigma"] = sigma
|
| 296 |
+
elif method == "median":
|
| 297 |
+
kernel_size = kwargs.get("kernel_size", 5)
|
| 298 |
+
denoised_intensities = signal.medfilt(intensities, kernel_size)
|
| 299 |
+
metadata["kernel_size"] = kernel_size
|
| 300 |
+
elif method == "wiener":
|
| 301 |
+
noise_power = kwargs.get("noise_power", None)
|
| 302 |
+
denoised_intensities = signal.wiener(intensities, noise=noise_power)
|
| 303 |
+
metadata["noise_power"] = noise_power
|
| 304 |
+
|
| 305 |
+
self.preprocessing_log.append(f"Noise reduction: {method}")
|
| 306 |
+
metadata["final_noise_level"] = np.std(np.diff(denoised_intensities))
|
| 307 |
+
|
| 308 |
+
return denoised_intensities, metadata
|
| 309 |
+
|
| 310 |
+
def technique_specific_preprocessing(
|
| 311 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray, technique: str
|
| 312 |
+
) -> tuple[np.ndarray, Dict]:
|
| 313 |
+
"""
|
| 314 |
+
Apply technique-specific preprocessing optimizations
|
| 315 |
+
|
| 316 |
+
Args:
|
| 317 |
+
wavenumbers: Wavenumber array
|
| 318 |
+
intensities: Intensity array
|
| 319 |
+
technique: Spectroscopy technique
|
| 320 |
+
|
| 321 |
+
Returns:
|
| 322 |
+
Processed intensities and metadata
|
| 323 |
+
"""
|
| 324 |
+
processed_intensities = intensities.copy()
|
| 325 |
+
metadata = {"technique": technique, "optimizations_applied": []}
|
| 326 |
+
|
| 327 |
+
if technique == SpectroscopyType.ATR_FTIR:
|
| 328 |
+
processed_intensities = self._atr_correction(wavenumbers, intensities)
|
| 329 |
+
metadata["optimizations_applied"].append("ATR_penetration_correction")
|
| 330 |
+
elif technique == SpectroscopyType.RAMAN:
|
| 331 |
+
processed_intensities = self._cosmic_ray_removal(intensities)
|
| 332 |
+
metadata["optimizations_applied"].append("cosmic_ray_removal")
|
| 333 |
+
processed_intensities = self._fluorescence_correction(
|
| 334 |
+
wavenumbers, processed_intensities
|
| 335 |
+
)
|
| 336 |
+
metadata["optimizations_applied"].append("fluorescence_correction")
|
| 337 |
+
elif technique == SpectroscopyType.FTIR:
|
| 338 |
+
processed_intensities = self._atmospheric_correction(
|
| 339 |
+
wavenumbers, intensities
|
| 340 |
+
)
|
| 341 |
+
metadata["optimizations_applied"].append("atmospheric_correction")
|
| 342 |
+
|
| 343 |
+
self.preprocessing_log.append(f"Technique-specific preprocessing: {technique}")
|
| 344 |
+
return processed_intensities, metadata
|
| 345 |
+
|
| 346 |
+
def _atr_correction(
|
| 347 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
| 348 |
+
) -> np.ndarray:
|
| 349 |
+
"""
|
| 350 |
+
Apply ATR correction for wavelength-dependant penetration depth
|
| 351 |
+
"""
|
| 352 |
+
correction_factor = np.sqrt(wavenumbers / np.max(wavenumbers))
|
| 353 |
+
return intensities * correction_factor
|
| 354 |
+
|
| 355 |
+
def _cosmic_ray_removal(
|
| 356 |
+
self, intensities: np.ndarray, threshold: float = 3.0
|
| 357 |
+
) -> np.ndarray:
|
| 358 |
+
"""
|
| 359 |
+
Remove cosmic ray spikes from Raman spectra
|
| 360 |
+
"""
|
| 361 |
+
diff = np.abs(np.diff(intensities, prepend=intensities[0]))
|
| 362 |
+
mean_diff = np.mean(diff)
|
| 363 |
+
std_diff = np.std(diff)
|
| 364 |
+
|
| 365 |
+
spikes = diff > (mean_diff + threshold * std_diff)
|
| 366 |
+
corrected = intensities.copy()
|
| 367 |
+
|
| 368 |
+
for i in np.where(spikes)[0]:
|
| 369 |
+
if i > 0 and i < len(corrected) - 1:
|
| 370 |
+
corrected[i] = (corrected[i - 1] + corrected[i + 1]) / 2
|
| 371 |
+
|
| 372 |
+
return corrected
|
| 373 |
+
|
| 374 |
+
def _fluorescence_correction(
|
| 375 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
| 376 |
+
) -> np.ndarray:
|
| 377 |
+
"""
|
| 378 |
+
Remove fluorescence from Raman spectra
|
| 379 |
+
"""
|
| 380 |
+
try:
|
| 381 |
+
coeffs = np.polyfit(wavenumbers, intensities, deg=3)
|
| 382 |
+
background = np.polyval(coeffs, wavenumbers)
|
| 383 |
+
return intensities - background
|
| 384 |
+
except np.linalg.LinAlgError:
|
| 385 |
+
return intensities
|
| 386 |
+
|
| 387 |
+
def _atmospheric_correction(
|
| 388 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
| 389 |
+
) -> np.ndarray:
|
| 390 |
+
"""
|
| 391 |
+
Correct for atmospheric CO2 and water vapor absorption
|
| 392 |
+
"""
|
| 393 |
+
corrected = intensities.copy()
|
| 394 |
+
co2_mask = (wavenumbers >= 2350) & (wavenumbers <= 2380)
|
| 395 |
+
if np.any(co2_mask):
|
| 396 |
+
non_co2_idx = ~co2_mask
|
| 397 |
+
if np.any(non_co2_idx):
|
| 398 |
+
interp_func = interp1d(
|
| 399 |
+
wavenumbers[non_co2_idx],
|
| 400 |
+
corrected[non_co2_idx],
|
| 401 |
+
kind="linear",
|
| 402 |
+
bounds_error=False,
|
| 403 |
+
fill_value="extrapolate",
|
| 404 |
+
)
|
| 405 |
+
corrected[co2_mask] = interp_func(wavenumbers[co2_mask])
|
| 406 |
+
|
| 407 |
+
return corrected
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
class MultiModalSpectroscopyEngine:
|
| 411 |
+
"""Engine for handling multi-modal spectrscopy data fusion."""
|
| 412 |
+
|
| 413 |
+
def __init__(self):
|
| 414 |
+
self.preprocessor = AdvancedPreprocessor()
|
| 415 |
+
self.registered_techniques = {}
|
| 416 |
+
self.fusion_strategies = [
|
| 417 |
+
"concatenation",
|
| 418 |
+
"weighted_average",
|
| 419 |
+
"pca_fusion",
|
| 420 |
+
"attention_fusion",
|
| 421 |
+
]
|
| 422 |
+
|
| 423 |
+
def register_spectrum(
|
| 424 |
+
self,
|
| 425 |
+
wavenumbers: np.ndarray,
|
| 426 |
+
intensities: np.ndarray,
|
| 427 |
+
technique: str,
|
| 428 |
+
metadata: Optional[Dict] = None,
|
| 429 |
+
) -> str:
|
| 430 |
+
"""
|
| 431 |
+
Register a spectrum for multi-modal analysis
|
| 432 |
+
|
| 433 |
+
Args:
|
| 434 |
+
wavenumbers: Wavenumber array
|
| 435 |
+
intensities: Intensity array
|
| 436 |
+
technique: Spectroscopy technique type
|
| 437 |
+
metadata: Additional metadata for the spectrum
|
| 438 |
+
|
| 439 |
+
Returns:
|
| 440 |
+
Spectrum ID for tracking
|
| 441 |
+
"""
|
| 442 |
+
spectrum_id = f"{technique}_{len(self.registered_techniques)}"
|
| 443 |
+
|
| 444 |
+
self.registered_techniques[spectrum_id] = {
|
| 445 |
+
"wavenumbers": wavenumbers,
|
| 446 |
+
"intensities": intensities,
|
| 447 |
+
"technique": technique,
|
| 448 |
+
"metadata": metadata or {},
|
| 449 |
+
"characteristics": SPECTRAL_CHARACTERISTICS.get(technique),
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
return spectrum_id
|
| 453 |
+
|
| 454 |
+
def preprocess_spectrum(
|
| 455 |
+
self, spectrum_id: str, preprocessing_config: Optional[Dict] = None
|
| 456 |
+
) -> Dict:
|
| 457 |
+
"""
|
| 458 |
+
Apply comprehensive preprocessing to a registered spectrum
|
| 459 |
+
|
| 460 |
+
Args:
|
| 461 |
+
spectrum_id: ID of registered spectrum
|
| 462 |
+
preprocessing_config: Configuration for preprocessing steps
|
| 463 |
+
|
| 464 |
+
Returns:
|
| 465 |
+
Processing results and metadata
|
| 466 |
+
"""
|
| 467 |
+
if spectrum_id not in self.registered_techniques:
|
| 468 |
+
raise ValueError(f"Spectrum with ID {spectrum_id} not found.")
|
| 469 |
+
|
| 470 |
+
spectrum_data = self.registered_techniques[spectrum_id]
|
| 471 |
+
wavenumbers = spectrum_data["wavenumbers"]
|
| 472 |
+
intensities = spectrum_data["intensities"]
|
| 473 |
+
technique = spectrum_data["technique"]
|
| 474 |
+
|
| 475 |
+
config = preprocessing_config or {}
|
| 476 |
+
|
| 477 |
+
processed_intensities = intensities.copy()
|
| 478 |
+
processing_metadata = {"steps_applied": [], "step_metadata": {}}
|
| 479 |
+
|
| 480 |
+
if config.get("baseline_correction", True):
|
| 481 |
+
method = config.get("baseline_method", "airpls")
|
| 482 |
+
processed_intensities, baseline_metadata = (
|
| 483 |
+
self.preprocessor.baseline_correction(
|
| 484 |
+
wavenumbers, processed_intensities, method=method
|
| 485 |
+
)
|
| 486 |
+
)
|
| 487 |
+
processing_metadata["steps_applied"].append("baseline_correction")
|
| 488 |
+
processing_metadata["step_metadata"][
|
| 489 |
+
"baseline_correction"
|
| 490 |
+
] = baseline_metadata
|
| 491 |
+
|
| 492 |
+
processed_intensities, technique_meta = (
|
| 493 |
+
self.preprocessor.technique_specific_preprocessing(
|
| 494 |
+
wavenumbers, processed_intensities, technique
|
| 495 |
+
)
|
| 496 |
+
)
|
| 497 |
+
processing_metadata["steps_applied"].append("technique_specific")
|
| 498 |
+
processing_metadata["step_metadata"]["technique_specific"] = technique_meta
|
| 499 |
+
|
| 500 |
+
if config.get("noise_reduction", True):
|
| 501 |
+
method = config.get("noise_method", "savgol")
|
| 502 |
+
processed_intensities, noise_meta = self.preprocessor.noise_reduction(
|
| 503 |
+
wavenumbers, processed_intensities, method=method
|
| 504 |
+
)
|
| 505 |
+
processing_metadata["steps_applied"].append("noise_reduction")
|
| 506 |
+
processing_metadata["step_metadata"]["noise_reduction"] = noise_meta
|
| 507 |
+
|
| 508 |
+
if config.get("normalization", True):
|
| 509 |
+
method = config.get("norm_method", "vector")
|
| 510 |
+
processed_intensities, norm_meta = self.preprocessor.normalization(
|
| 511 |
+
wavenumbers, processed_intensities, method=method
|
| 512 |
+
)
|
| 513 |
+
processing_metadata["steps_applied"].append("normalization")
|
| 514 |
+
processing_metadata["step_metadata"]["normalization"] = norm_meta
|
| 515 |
+
|
| 516 |
+
self.registered_techniques[spectrum_id][
|
| 517 |
+
"processed_intensities"
|
| 518 |
+
] = processed_intensities
|
| 519 |
+
self.registered_techniques[spectrum_id][
|
| 520 |
+
"processing_metadata"
|
| 521 |
+
] = processing_metadata
|
| 522 |
+
|
| 523 |
+
return {
|
| 524 |
+
"spectrum_id": spectrum_id,
|
| 525 |
+
"processed_intensities": processed_intensities,
|
| 526 |
+
"processing_metadata": processing_metadata,
|
| 527 |
+
"quality_score": self._calculate_quality_score(
|
| 528 |
+
wavenumbers, processed_intensities
|
| 529 |
+
),
|
| 530 |
+
}
|
| 531 |
+
|
| 532 |
+
def fuse_spectra(
|
| 533 |
+
self,
|
| 534 |
+
spectrum_ids: List[str],
|
| 535 |
+
fusion_strategy: str = "concatenation",
|
| 536 |
+
target_wavenumber_range: Optional[Tuple[float, float]] = None,
|
| 537 |
+
) -> Dict:
|
| 538 |
+
"""Fuse multiple spectra using specified strategy
|
| 539 |
+
|
| 540 |
+
Args:
|
| 541 |
+
spectrum_ids: List of spectrum IDs to fuse
|
| 542 |
+
fusion_strategy: Fusion strategy ('concatenation', 'weighted_average', etc.)
|
| 543 |
+
target_wavenumber_range: Common wavenumber for fusion
|
| 544 |
+
|
| 545 |
+
Returns:
|
| 546 |
+
Fused spectrum data and processing metadata
|
| 547 |
+
"""
|
| 548 |
+
if not all(sid in self.registered_techniques for sid in spectrum_ids):
|
| 549 |
+
raise ValueError("Some spectrum IDs not found")
|
| 550 |
+
|
| 551 |
+
spectra_data = [self.registered_techniques[sid] for sid in spectrum_ids]
|
| 552 |
+
|
| 553 |
+
if fusion_strategy == "concatenation":
|
| 554 |
+
return self._concatenation_fusion(spectra_data, target_wavenumber_range)
|
| 555 |
+
elif fusion_strategy == "weighted_average":
|
| 556 |
+
return self._weighted_average_fusion(spectra_data, target_wavenumber_range)
|
| 557 |
+
elif fusion_strategy == "pca_fusion":
|
| 558 |
+
return self._pca_fusion(spectra_data, target_wavenumber_range)
|
| 559 |
+
elif fusion_strategy == "attention_fusion":
|
| 560 |
+
return self._attention_fusion(spectra_data, target_wavenumber_range)
|
| 561 |
+
else:
|
| 562 |
+
raise ValueError(
|
| 563 |
+
f"Unknown or unsupported fusion strategy: {fusion_strategy}"
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
def _interpolate_to_common_grid(
|
| 567 |
+
self,
|
| 568 |
+
spectra_data: List[Dict],
|
| 569 |
+
target_range: Tuple[float, float],
|
| 570 |
+
num_points: int = 1000,
|
| 571 |
+
) -> Tuple[np.ndarray, List[np.ndarray]]:
|
| 572 |
+
"""Interpolate all spectra to a common wavenumber grid"""
|
| 573 |
+
common_wavenumbers = np.linspace(target_range[0], target_range[1], num_points)
|
| 574 |
+
interpolated_intensities_list = []
|
| 575 |
+
|
| 576 |
+
for spectrum in spectra_data:
|
| 577 |
+
wavenumbers = spectrum["wavenumbers"]
|
| 578 |
+
intensities = spectrum.get("processed_intensities", spectrum["intensities"])
|
| 579 |
+
|
| 580 |
+
valid_range = (wavenumbers.min(), wavenumbers.max())
|
| 581 |
+
mask = (common_wavenumbers >= valid_range[0]) & (
|
| 582 |
+
common_wavenumbers <= valid_range[1]
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
interp_intensities = np.zeros_like(common_wavenumbers)
|
| 586 |
+
if np.any(mask):
|
| 587 |
+
interp_func = interp1d(
|
| 588 |
+
wavenumbers,
|
| 589 |
+
intensities,
|
| 590 |
+
kind="linear",
|
| 591 |
+
bounds_error=False,
|
| 592 |
+
fill_value=0,
|
| 593 |
+
)
|
| 594 |
+
interp_intensities[mask] = interp_func(common_wavenumbers[mask])
|
| 595 |
+
|
| 596 |
+
interpolated_intensities_list.append(interp_intensities)
|
| 597 |
+
|
| 598 |
+
return common_wavenumbers, interpolated_intensities_list
|
| 599 |
+
|
| 600 |
+
def _concatenation_fusion(
|
| 601 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
| 602 |
+
) -> Dict:
|
| 603 |
+
"""Simple concatenation of spectra"""
|
| 604 |
+
if target_range is None:
|
| 605 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
| 606 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
| 607 |
+
target_range = (min_wn, max_wn)
|
| 608 |
+
|
| 609 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
| 610 |
+
spectra_data, target_range
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
fused_intensities = np.concatenate(interpolated_intensities)
|
| 614 |
+
fused_wavenumbers = np.tile(common_wn, len(spectra_data))
|
| 615 |
+
|
| 616 |
+
return {
|
| 617 |
+
"wavenumbers": fused_wavenumbers,
|
| 618 |
+
"intensities": fused_intensities,
|
| 619 |
+
"fusion_strategy": "concatenation",
|
| 620 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
| 621 |
+
"common_range": target_range,
|
| 622 |
+
}
|
| 623 |
+
|
| 624 |
+
def _weighted_average_fusion(
|
| 625 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
| 626 |
+
) -> Dict:
|
| 627 |
+
"""Weighted average fusion based on data quality"""
|
| 628 |
+
if target_range is None:
|
| 629 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
| 630 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
| 631 |
+
target_range = (min_wn, max_wn)
|
| 632 |
+
|
| 633 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
| 634 |
+
spectra_data, target_range
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
weights = []
|
| 638 |
+
for i, spectrum in enumerate(spectra_data):
|
| 639 |
+
quality_score = self._calculate_quality_score(
|
| 640 |
+
common_wn, interpolated_intensities[i]
|
| 641 |
+
)
|
| 642 |
+
weights.append(quality_score)
|
| 643 |
+
|
| 644 |
+
weights = np.array(weights)
|
| 645 |
+
weights_sum = np.sum(weights)
|
| 646 |
+
weights = (
|
| 647 |
+
weights / weights_sum
|
| 648 |
+
if weights_sum > 0
|
| 649 |
+
else np.full_like(weights, 1.0 / len(weights))
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
fused_intensities = np.zeros_like(common_wn)
|
| 653 |
+
for i, intensities in enumerate(interpolated_intensities):
|
| 654 |
+
fused_intensities += weights[i] * intensities
|
| 655 |
+
|
| 656 |
+
return {
|
| 657 |
+
"wavenumbers": common_wn,
|
| 658 |
+
"intensities": fused_intensities,
|
| 659 |
+
"fusion_strategy": "weighted_average",
|
| 660 |
+
"weights": weights.tolist(),
|
| 661 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
| 662 |
+
"common_range": target_range,
|
| 663 |
+
}
|
| 664 |
+
|
| 665 |
+
def _pca_fusion(
|
| 666 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
| 667 |
+
) -> Dict:
|
| 668 |
+
"""PCA-based fusion to extract common features"""
|
| 669 |
+
if target_range is None:
|
| 670 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
| 671 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
| 672 |
+
target_range = (min_wn, max_wn)
|
| 673 |
+
|
| 674 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
| 675 |
+
spectra_data, target_range
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
spectra_matrix = np.vstack(interpolated_intensities)
|
| 679 |
+
|
| 680 |
+
n_components = min(len(spectra_data), 3)
|
| 681 |
+
pca = PCA(n_components=n_components)
|
| 682 |
+
pca.fit(spectra_matrix.T) # Fit on features (wavenumbers)
|
| 683 |
+
|
| 684 |
+
fused_intensities = np.dot(pca.explained_variance_ratio_, pca.components_)
|
| 685 |
+
|
| 686 |
+
return {
|
| 687 |
+
"wavenumbers": common_wn,
|
| 688 |
+
"intensities": fused_intensities,
|
| 689 |
+
"fusion_strategy": "pca_fusion",
|
| 690 |
+
"explained_variance_ratio": pca.explained_variance_ratio_.tolist(),
|
| 691 |
+
"n_components": n_components,
|
| 692 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
| 693 |
+
"common_range": target_range,
|
| 694 |
+
}
|
| 695 |
+
|
| 696 |
+
def _attention_fusion(
|
| 697 |
+
self, spectra_data: List[Dict], target_range: Optional[Tuple[float, float]]
|
| 698 |
+
) -> Dict:
|
| 699 |
+
"""Attention-based fusion using a simple neural attention-like mechanism"""
|
| 700 |
+
if target_range is None:
|
| 701 |
+
min_wn = max(s["wavenumbers"].min() for s in spectra_data)
|
| 702 |
+
max_wn = min(s["wavenumbers"].max() for s in spectra_data)
|
| 703 |
+
target_range = (min_wn, max_wn)
|
| 704 |
+
|
| 705 |
+
common_wn, interpolated_intensities = self._interpolate_to_common_grid(
|
| 706 |
+
spectra_data, target_range
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
attention_scores = []
|
| 710 |
+
for intensities in interpolated_intensities:
|
| 711 |
+
variance = np.var(intensities)
|
| 712 |
+
quality = self._calculate_quality_score(common_wn, intensities)
|
| 713 |
+
attention_scores.append(variance * quality)
|
| 714 |
+
|
| 715 |
+
attention_scores = np.array(attention_scores)
|
| 716 |
+
exp_scores = np.exp(
|
| 717 |
+
attention_scores - np.max(attention_scores)
|
| 718 |
+
) # Softmax for stability
|
| 719 |
+
attention_weights = exp_scores / np.sum(exp_scores)
|
| 720 |
+
|
| 721 |
+
fused_intensities = np.zeros_like(common_wn)
|
| 722 |
+
for i, intensities in enumerate(interpolated_intensities):
|
| 723 |
+
fused_intensities += attention_weights[i] * intensities
|
| 724 |
+
|
| 725 |
+
return {
|
| 726 |
+
"wavenumbers": common_wn,
|
| 727 |
+
"intensities": fused_intensities,
|
| 728 |
+
"fusion_strategy": "attention_fusion",
|
| 729 |
+
"attention_weights": attention_weights.tolist(),
|
| 730 |
+
"source_techniques": [s["technique"] for s in spectra_data],
|
| 731 |
+
"common_range": target_range,
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
def _calculate_quality_score(
|
| 735 |
+
self, wavenumbers: np.ndarray, intensities: np.ndarray
|
| 736 |
+
) -> float:
|
| 737 |
+
"""Calculate spectral quality score based on signal-to-noise ratio and other metrics"""
|
| 738 |
+
try:
|
| 739 |
+
signal_power = np.var(intensities)
|
| 740 |
+
if len(intensities) < 2:
|
| 741 |
+
return 0.0
|
| 742 |
+
noise_power = np.var(np.diff(intensities))
|
| 743 |
+
snr = signal_power / noise_power if noise_power > 0 else 1e6
|
| 744 |
+
|
| 745 |
+
peaks, properties = find_peaks(
|
| 746 |
+
intensities, prominence=0.1 * np.std(intensities)
|
| 747 |
+
)
|
| 748 |
+
peak_prominence = (
|
| 749 |
+
np.mean(properties["prominences"]) if len(peaks) > 0 else 0
|
| 750 |
+
)
|
| 751 |
+
|
| 752 |
+
baseline_stability = 1.0 / (
|
| 753 |
+
1.0 + np.std(intensities[:10]) + np.std(intensities[-10:])
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
quality_score = (
|
| 757 |
+
np.log10(max(snr, 1)) * 0.5
|
| 758 |
+
+ peak_prominence * 0.3
|
| 759 |
+
+ baseline_stability * 0.2
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
return max(0, min(1, quality_score))
|
| 763 |
+
except Exception:
|
| 764 |
+
return 0.5
|
| 765 |
+
|
| 766 |
+
def get_technique_recommendations(self, sample_type: str) -> List[Dict]:
|
| 767 |
+
"""
|
| 768 |
+
Recommend optimal spectroscopy techniques for a given sample type
|
| 769 |
+
|
| 770 |
+
Args:
|
| 771 |
+
sample_type: Type of sample (e.g., 'solid_polymer', 'liquid_polymer', 'thin_film')
|
| 772 |
+
|
| 773 |
+
Returns:
|
| 774 |
+
List of recommended techniques with rationale
|
| 775 |
+
"""
|
| 776 |
+
recommendations = []
|
| 777 |
+
|
| 778 |
+
if sample_type in ["solid_polymer", "polymer_pellets", "polymer_film"]:
|
| 779 |
+
recommendations.extend(
|
| 780 |
+
[
|
| 781 |
+
{
|
| 782 |
+
"technique": SpectroscopyType.ATR_FTIR,
|
| 783 |
+
"priority": "high",
|
| 784 |
+
"rationale": "Minimal sample preparation, direct solid contact analysis",
|
| 785 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 786 |
+
SpectroscopyType.ATR_FTIR
|
| 787 |
+
],
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"technique": SpectroscopyType.RAMAN,
|
| 791 |
+
"priority": "medium",
|
| 792 |
+
"rationale": "Complementary vibrational information, non-destructive",
|
| 793 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 794 |
+
SpectroscopyType.RAMAN
|
| 795 |
+
],
|
| 796 |
+
},
|
| 797 |
+
]
|
| 798 |
+
)
|
| 799 |
+
elif sample_type in ["liquid_polymer", "polymer_solution"]:
|
| 800 |
+
recommendations.extend(
|
| 801 |
+
[
|
| 802 |
+
{
|
| 803 |
+
"technique": SpectroscopyType.FTIR,
|
| 804 |
+
"priority": "high",
|
| 805 |
+
"rationale": "Versatile for liquid samples, wide spectral range",
|
| 806 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 807 |
+
SpectroscopyType.FTIR
|
| 808 |
+
],
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"technique": SpectroscopyType.RAMAN,
|
| 812 |
+
"priority": "high",
|
| 813 |
+
"rationale": "Water compatible, molecular vibrations",
|
| 814 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 815 |
+
SpectroscopyType.RAMAN
|
| 816 |
+
],
|
| 817 |
+
},
|
| 818 |
+
]
|
| 819 |
+
)
|
| 820 |
+
elif sample_type in ["weathered_polymer", "aged_polymer"]:
|
| 821 |
+
recommendations.extend(
|
| 822 |
+
[
|
| 823 |
+
{
|
| 824 |
+
"technique": SpectroscopyType.ATR_FTIR,
|
| 825 |
+
"priority": "high",
|
| 826 |
+
"rationale": "Surface analysis for weathering products",
|
| 827 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 828 |
+
SpectroscopyType.ATR_FTIR
|
| 829 |
+
],
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"technique": SpectroscopyType.FTIR,
|
| 833 |
+
"priority": "medium",
|
| 834 |
+
"rationale": "Bulk analysis for degradation assessment",
|
| 835 |
+
"characteristics": SPECTRAL_CHARACTERISTICS[
|
| 836 |
+
SpectroscopyType.FTIR
|
| 837 |
+
],
|
| 838 |
+
},
|
| 839 |
+
]
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
return recommendations
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
""
|