Spaces:
Sleeping
Sleeping
devjas1
commited on
Commit
Β·
9e50ae2
1
Parent(s):
27f8f90
(FEAT): implement confidence calculation and visualization utilities
Browse files- utils/confidence.py +163 -0
utils/confidence.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Confidence calculation and visualization utilities.
|
| 2 |
+
Provides normalized softmax confidence and color-coded badges"""
|
| 3 |
+
from typing import Tuple, List
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def calculate_softmax_confidence(logits: torch.Tensor) -> Tuple[np.ndarray, float, str, str]:
|
| 10 |
+
"""Calculate normalized confidence using softmax
|
| 11 |
+
Args:
|
| 12 |
+
logits: Raw model logits tensor
|
| 13 |
+
Returns:
|
| 14 |
+
Tuple of (probabilities, max_confidence, confidence_level, confidence_emoji)
|
| 15 |
+
"""
|
| 16 |
+
# ===Apply softmax to get probabilities===
|
| 17 |
+
probs_np = F.softmax(logits, dim=1).cpu().numpy().flatten()
|
| 18 |
+
|
| 19 |
+
# ===Get maximum probability as confidence===
|
| 20 |
+
max_confidence = float(np.max(probs_np))
|
| 21 |
+
|
| 22 |
+
# ===Determine confidence level and emoji===
|
| 23 |
+
if max_confidence >= 0.80:
|
| 24 |
+
confidence_level = "HIGH"
|
| 25 |
+
confidence_emoji = "π’"
|
| 26 |
+
elif max_confidence >= 0.60:
|
| 27 |
+
confidence_level = "MEDIUM"
|
| 28 |
+
confidence_emoji = "π‘"
|
| 29 |
+
else:
|
| 30 |
+
confidence_level = "LOW"
|
| 31 |
+
confidence_emoji = "π΄"
|
| 32 |
+
|
| 33 |
+
return probs_np, max_confidence, confidence_level, confidence_emoji
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_confidence_badge(confidence: float) -> Tuple[str, str]:
|
| 37 |
+
"""Get confidence badge emoji and level description
|
| 38 |
+
Args:
|
| 39 |
+
confidence: Confidence value (0-1)
|
| 40 |
+
Returns:
|
| 41 |
+
Tuple of (emoji, level)
|
| 42 |
+
"""
|
| 43 |
+
if confidence >= 0.80:
|
| 44 |
+
return "π’", "HIGH"
|
| 45 |
+
elif confidence >= 0.60:
|
| 46 |
+
return "π‘", "MEDIUM"
|
| 47 |
+
else:
|
| 48 |
+
return "π΄", "LOW"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def format_confidence_display(confidence: float, level: str, emoji: str) -> str:
|
| 52 |
+
"""
|
| 53 |
+
Format confidence for display in UI
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
confidence: Confidence value (0-1)
|
| 57 |
+
level: Confidence level (HIGH/MEDIUM/LOW)
|
| 58 |
+
emoji: Confidence emoji
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
Formatted confidence string
|
| 62 |
+
"""
|
| 63 |
+
return f"{emoji} **{level}** ({confidence:.1%})"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def create_confidence_progress_html(
|
| 67 |
+
probabilities: np.ndarray,
|
| 68 |
+
labels: List[str],
|
| 69 |
+
highlight_idx: int
|
| 70 |
+
) -> str:
|
| 71 |
+
"""
|
| 72 |
+
Create HTML for confidence progress bars
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
probabilities: Array of class probabilities
|
| 76 |
+
labels: List of class labels
|
| 77 |
+
highlight_idx: Index of predicted class to highlight
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
HTML string for progress bars
|
| 81 |
+
"""
|
| 82 |
+
if len(probabilities) == 0 or len(labels) == 0:
|
| 83 |
+
return "<p>No confidence data available</p>"
|
| 84 |
+
|
| 85 |
+
html_parts = []
|
| 86 |
+
|
| 87 |
+
for i, (prob, label) in enumerate(zip(probabilities, labels)):
|
| 88 |
+
# ===Color based on whether this is the predicted class===
|
| 89 |
+
if i == highlight_idx:
|
| 90 |
+
if prob >= 0.80:
|
| 91 |
+
color = "#22c55e" # green-500
|
| 92 |
+
text_color = "#ffffff"
|
| 93 |
+
elif prob >= 0.60:
|
| 94 |
+
color = "#eab308" # yellow-500
|
| 95 |
+
text_color = "#000000"
|
| 96 |
+
else:
|
| 97 |
+
color = "#ef4444" # red-500
|
| 98 |
+
text_color = "#ffffff"
|
| 99 |
+
else:
|
| 100 |
+
color = "#e5e7eb" # gray-200
|
| 101 |
+
text_color = "#6b7280" # gray-500
|
| 102 |
+
|
| 103 |
+
percentage = prob * 100
|
| 104 |
+
|
| 105 |
+
html_parts.append(f"""
|
| 106 |
+
<div style="margin-bottom: 8px;">
|
| 107 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px;">
|
| 108 |
+
<span style="font-size: 0.875rem; font-weight: 500; color: #374151;">{label}</span>
|
| 109 |
+
<span style="font-size: 0.875rem; color: #6b7280;">{percentage:.1f}%</span>
|
| 110 |
+
</div>
|
| 111 |
+
<div style="width: 100%; background-color: #f3f4f6; border-radius: 0.375rem; height: 20px; overflow: hidden;">
|
| 112 |
+
<div style="
|
| 113 |
+
width: {percentage}%;
|
| 114 |
+
height: 100%;
|
| 115 |
+
background-color: {color};
|
| 116 |
+
display: flex;
|
| 117 |
+
align-items: center;
|
| 118 |
+
justify-content: center;
|
| 119 |
+
transition: width 0.3s ease;
|
| 120 |
+
">
|
| 121 |
+
{f'<span style="color: {text_color}; font-size: 0.75rem; font-weight: 600;">{percentage:.1f}%</span>' if percentage > 20 else ''}
|
| 122 |
+
</div>
|
| 123 |
+
</div>
|
| 124 |
+
</div>
|
| 125 |
+
""")
|
| 126 |
+
|
| 127 |
+
return f"""
|
| 128 |
+
<div style="padding: 16px; background-color: #f9fafb; border-radius: 0.5rem; border: 1px solid #e5e7eb;">
|
| 129 |
+
<h4 style="margin: 0 0 12px 0; font-size: 1rem; color: #374151;">Confidence Breakdown</h4>
|
| 130 |
+
{''.join(html_parts)}
|
| 131 |
+
</div>
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def calculate_legacy_confidence(logits_list: List[float]) -> Tuple[float, str, str]:
|
| 136 |
+
"""
|
| 137 |
+
Calculate confidence using legacy logit margin method for backward compatibility
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
logits_list: List of raw logits
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
Tuple of (margin, confidence_level, confidence_emoji)
|
| 144 |
+
"""
|
| 145 |
+
if len(logits_list) < 2:
|
| 146 |
+
return 0.0, "LOW", "π΄"
|
| 147 |
+
|
| 148 |
+
logits_array = np.array(logits_list)
|
| 149 |
+
sorted_logits = np.sort(logits_array)[::-1] # Descending order
|
| 150 |
+
margin = sorted_logits[0] - sorted_logits[1]
|
| 151 |
+
|
| 152 |
+
# ===Define thresholds for margin-based confidence===
|
| 153 |
+
if margin >= 2.0:
|
| 154 |
+
confidence_level = "HIGH"
|
| 155 |
+
confidence_emoji = "π’"
|
| 156 |
+
elif margin >= 1.0:
|
| 157 |
+
confidence_level = "MEDIUM"
|
| 158 |
+
confidence_emoji = "π‘"
|
| 159 |
+
else:
|
| 160 |
+
confidence_level = "LOW"
|
| 161 |
+
confidence_emoji = "π΄"
|
| 162 |
+
|
| 163 |
+
return margin, confidence_level, confidence_emoji
|