Spaces:
Sleeping
(MILESTONE)[Feature: Image Processing. ]: Add comprehensive spectral image processing module
Browse files- Allows users to upload images, select preprocessing and extraction options, process images, visualize results, and optionally run inference on extracted spectra.
- Stores processed spectrum and peaks in session state for downstream analysis.
- Included utility `image_to_spectrum_converter` for direct file-to-spectrum conversion.
- Added extensive docstrings and inline comments to facilitate maintainability and future extension.
- Created new module `utils/image_processing.py` to support image-based analysis for polymer classification.
- Implemented `SpectralImageProcessor` class for loading, preprocessing, and extracting spectral data from images.
- Methods include:
- `load_image`: Handles various image sources.
- `preprocess_image`: Resizes, enhances contrast, applies blur, and normalizes images.
- `extract_spectral_profile`: Converts 2D image data to 1D spectral profile via several selectable methods.
- `image_to_spectrum`: Maps extracted profile to wavenumber domain.
- `detect_spectral_peaks`: Identifies peaks using SciPy's signal library.
- `create_visualization`: Generates matplotlib figures of image and spectrum, with peak markers.
- Allows users to upload images, select preprocessing and extraction options, process images, visualize results, and optionally run inference on extracted spectra.
- Stores processed spectrum and peaks in session state for downstream analysis.
- Included utility `image_to_spectrum_converter` for direct file-to-spectrum conversion.
- Added `render_image_upload_interface` for Streamlit UI.
- Added extensive docstrings and inline comments to facilitate maintainability and future extension.
- utils/image_processing.py +380 -0
|
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image loading and transformation utilities for polymer classification.
|
| 3 |
+
Supports conversion of spectral images to processable data.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import Tuple, Optional, List, Dict
|
| 7 |
+
import base64
|
| 8 |
+
import io
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
| 11 |
+
import cv2
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
from matplotlib.figure import Figure
|
| 14 |
+
import streamlit as st
|
| 15 |
+
import pandas as pd
|
| 16 |
+
|
| 17 |
+
# Use existing inference pipeline
|
| 18 |
+
from utils.preprocessing import preprocess_spectrum
|
| 19 |
+
from core_logic import run_inference
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class SpectralImageProcessor:
|
| 23 |
+
"""Handles loading and processing of spectral images."""
|
| 24 |
+
|
| 25 |
+
def __init__(self):
|
| 26 |
+
self.support_formats = [".png", ".jpg", ".jpeg", ".tiff", ".bmp"]
|
| 27 |
+
self.default_target_size = (224, 224)
|
| 28 |
+
|
| 29 |
+
def load_image(self, image_source) -> Optional[np.ndarray]:
|
| 30 |
+
"""Load image from various sources."""
|
| 31 |
+
try:
|
| 32 |
+
if isinstance(image_source, str):
|
| 33 |
+
# File path
|
| 34 |
+
img = Image.open(image_source)
|
| 35 |
+
elif hasattr(image_source, "read"):
|
| 36 |
+
# File-like object (Streamlit uploaded file)
|
| 37 |
+
img = Image.open(image_source)
|
| 38 |
+
elif isinstance(image_source, np.ndarray):
|
| 39 |
+
# NumPy array
|
| 40 |
+
return image_source
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError("Unsupported image source type")
|
| 43 |
+
|
| 44 |
+
# Convert to RGB if needed
|
| 45 |
+
if img.mode != "RGB":
|
| 46 |
+
img = img.convert("RGB")
|
| 47 |
+
|
| 48 |
+
return np.array(img)
|
| 49 |
+
|
| 50 |
+
except (FileNotFoundError, IOError, ValueError) as e:
|
| 51 |
+
st.error(f"Error loading image: {e}")
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
def preprocess_image(
|
| 55 |
+
self,
|
| 56 |
+
image: np.ndarray,
|
| 57 |
+
target_size: Optional[Tuple[int, int]] = None,
|
| 58 |
+
enhance_contrast: bool = True,
|
| 59 |
+
apply_gaussian_blur: bool = False,
|
| 60 |
+
normalize: bool = True,
|
| 61 |
+
) -> np.ndarray:
|
| 62 |
+
"""Preprocess image for analysis."""
|
| 63 |
+
if target_size is None:
|
| 64 |
+
target_size = self.default_target_size
|
| 65 |
+
|
| 66 |
+
# Convert to PIL for processing
|
| 67 |
+
img = Image.fromarray(image.astype(np.uint8))
|
| 68 |
+
|
| 69 |
+
# Resize
|
| 70 |
+
img = img.resize(target_size, Image.Resampling.LANCZOS)
|
| 71 |
+
|
| 72 |
+
# Enhance contrast if required
|
| 73 |
+
if enhance_contrast:
|
| 74 |
+
enhancer = ImageEnhance.Contrast(img)
|
| 75 |
+
img = enhancer.enhance(1.2)
|
| 76 |
+
|
| 77 |
+
# Apply Gaussian blur if requested
|
| 78 |
+
if apply_gaussian_blur:
|
| 79 |
+
img = img.filter(ImageFilter.GaussianBlur(radius=1))
|
| 80 |
+
|
| 81 |
+
# Convert back to numpy
|
| 82 |
+
processed = np.array(img)
|
| 83 |
+
|
| 84 |
+
# Normalize to [0, 1] if requested
|
| 85 |
+
if normalize:
|
| 86 |
+
processed = processed.astype(np.float32) / 255.0
|
| 87 |
+
|
| 88 |
+
return processed
|
| 89 |
+
|
| 90 |
+
def extract_spectral_profile(
|
| 91 |
+
self,
|
| 92 |
+
image: np.ndarray,
|
| 93 |
+
method: str = "average",
|
| 94 |
+
roi: Optional[Tuple[int, int, int, int]] = None,
|
| 95 |
+
) -> np.ndarray:
|
| 96 |
+
"""
|
| 97 |
+
Extract 1D spectral profile from 2D image.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
image: Input image array
|
| 101 |
+
method: 'average', 'center_line', 'max_intensity'
|
| 102 |
+
roi: Region of interest (x1, y1, x2, y2)
|
| 103 |
+
"""
|
| 104 |
+
if roi:
|
| 105 |
+
x1, y1, x2, y2 = roi
|
| 106 |
+
image_roi = image[y1:y2, x1:x2]
|
| 107 |
+
else:
|
| 108 |
+
image_roi = image
|
| 109 |
+
|
| 110 |
+
if len(image_roi.shape) == 3:
|
| 111 |
+
# Convert to grayscale if color
|
| 112 |
+
image_roi = np.mean(image_roi, axis=2)
|
| 113 |
+
|
| 114 |
+
if method == "average":
|
| 115 |
+
# Average along one axis
|
| 116 |
+
profile = np.mean(image_roi, axis=0)
|
| 117 |
+
elif method == "center_line":
|
| 118 |
+
# Extract center line
|
| 119 |
+
center_y = image_roi.shape[0] // 2
|
| 120 |
+
profile = image_roi[center_y, :]
|
| 121 |
+
elif method == "max_intensity":
|
| 122 |
+
# Maximum intensity projection
|
| 123 |
+
profile = np.max(image_roi, axis=0)
|
| 124 |
+
else:
|
| 125 |
+
raise ValueError(f"Unknown method: {method}")
|
| 126 |
+
|
| 127 |
+
return profile
|
| 128 |
+
|
| 129 |
+
def image_to_spectrum(
|
| 130 |
+
self,
|
| 131 |
+
image: np.ndarray,
|
| 132 |
+
wavenumber_range: Tuple[float, float] = (400, 4000),
|
| 133 |
+
method: str = "average",
|
| 134 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 135 |
+
"""Convert image to spectrum-like data."""
|
| 136 |
+
# Extract 1D profile
|
| 137 |
+
profile = self.extract_spectral_profile(image, method=method)
|
| 138 |
+
|
| 139 |
+
# Create wavenumber axis
|
| 140 |
+
wavenumbers = np.linspace(
|
| 141 |
+
wavenumber_range[0], wavenumber_range[1], len(profile)
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
return wavenumbers, profile
|
| 145 |
+
|
| 146 |
+
def detect_spectral_peaks(
|
| 147 |
+
self,
|
| 148 |
+
spectrum: np.ndarray,
|
| 149 |
+
wavenumbers: np.ndarray,
|
| 150 |
+
prominence: float = 0.1,
|
| 151 |
+
height: float = 0.1,
|
| 152 |
+
) -> List[Dict[str, float]]:
|
| 153 |
+
"""Detect peaks in spectral data."""
|
| 154 |
+
from scipy.signal import find_peaks
|
| 155 |
+
|
| 156 |
+
peaks, properties = find_peaks(spectrum, prominence=prominence, height=height)
|
| 157 |
+
|
| 158 |
+
peak_info = []
|
| 159 |
+
for i, peak_idx in enumerate(peaks):
|
| 160 |
+
peak_info.append(
|
| 161 |
+
{
|
| 162 |
+
"wavenumber": wavenumbers[peak_idx],
|
| 163 |
+
"intensity": spectrum[peak_idx],
|
| 164 |
+
"prominence": properties["prominences"][i],
|
| 165 |
+
"width": (
|
| 166 |
+
properties.get("widths", [None])[i]
|
| 167 |
+
if "widths" in properties
|
| 168 |
+
else None
|
| 169 |
+
),
|
| 170 |
+
}
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
return peak_info
|
| 174 |
+
|
| 175 |
+
def create_visualization(
|
| 176 |
+
self,
|
| 177 |
+
image: np.ndarray,
|
| 178 |
+
spectrum_x: np.ndarray,
|
| 179 |
+
spectrum_y: np.ndarray,
|
| 180 |
+
peaks: Optional[List[Dict]] = None,
|
| 181 |
+
) -> Figure:
|
| 182 |
+
"""Create visualization of image and extracted spectrum."""
|
| 183 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
|
| 184 |
+
|
| 185 |
+
# Display image
|
| 186 |
+
ax1.imshow(image, cmap="viridis" if len(image.shape) == 2 else None)
|
| 187 |
+
ax1.set_title("Input Image")
|
| 188 |
+
ax1.axis("off")
|
| 189 |
+
|
| 190 |
+
# Display spectrum
|
| 191 |
+
ax2.plot(
|
| 192 |
+
spectrum_x, spectrum_y, "b-", linewidth=1.5, label="Extracted Spectrum"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Mark peaks if provided
|
| 196 |
+
if peaks:
|
| 197 |
+
peak_wavenumbers = [p["wavenumber"] for p in peaks]
|
| 198 |
+
peak_intensities = [p["intensity"] for p in peaks]
|
| 199 |
+
ax2.plot(
|
| 200 |
+
peak_wavenumbers,
|
| 201 |
+
peak_intensities,
|
| 202 |
+
"ro",
|
| 203 |
+
markersize=6,
|
| 204 |
+
label="Detected Peaks",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
ax2.set_xlabel("Wavenumber (cm⁻¹)")
|
| 208 |
+
ax2.set_ylabel("Intensity")
|
| 209 |
+
ax2.set_title("Extracted Spectral Profile")
|
| 210 |
+
ax2.grid(True, alpha=0.3)
|
| 211 |
+
ax2.legend()
|
| 212 |
+
|
| 213 |
+
plt.tight_layout()
|
| 214 |
+
return fig
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def render_image_upload_interface():
|
| 218 |
+
"""Render UI for image upload and processing."""
|
| 219 |
+
st.markdown("#### Image-Based Spectral Analysis")
|
| 220 |
+
st.markdown(
|
| 221 |
+
"Upload spectral images for analysis and conversion to spectroscopic data."
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
processor = SpectralImageProcessor()
|
| 225 |
+
|
| 226 |
+
# Image upload
|
| 227 |
+
uploaded_image = st.file_uploader(
|
| 228 |
+
"Upload spectral image",
|
| 229 |
+
type=["png", "jpg", "jpeg", "tiff", "bmp"],
|
| 230 |
+
help="Upload an image containing spectral data",
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if uploaded_image is not None:
|
| 234 |
+
# Load and display original image
|
| 235 |
+
image = processor.load_image(uploaded_image)
|
| 236 |
+
|
| 237 |
+
if image is not None:
|
| 238 |
+
col1, col2 = st.columns([1, 1])
|
| 239 |
+
|
| 240 |
+
with col1:
|
| 241 |
+
st.markdown("##### Original Image")
|
| 242 |
+
st.image(image, use_column_width=True)
|
| 243 |
+
|
| 244 |
+
# Image info
|
| 245 |
+
st.write(f"**Dimensions**: {image.shape}")
|
| 246 |
+
st.write(f"**Size**: {uploaded_image.size} bytes")
|
| 247 |
+
|
| 248 |
+
with col2:
|
| 249 |
+
st.markdown("##### Processing Options")
|
| 250 |
+
|
| 251 |
+
# Processing parameters
|
| 252 |
+
target_width = st.slider("Target Width", 100, 1000, 500)
|
| 253 |
+
target_height = st.slider("Target Height", 100, 1000, 300)
|
| 254 |
+
enhance_contrast = st.checkbox("Enhance Contrast", value=True)
|
| 255 |
+
apply_blur = st.checkbox("Apply Gaussian Blur", value=False)
|
| 256 |
+
|
| 257 |
+
# Extraction method
|
| 258 |
+
extraction_method = st.selectbox(
|
| 259 |
+
"Spectrum Extraction Method",
|
| 260 |
+
["average", "center_line", "max_intensity"],
|
| 261 |
+
help="Method for converting 2D image to 1D spectrum",
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Wavenumber range
|
| 265 |
+
st.markdown("**Wavenumber Range (cm⁻¹)**")
|
| 266 |
+
wn_col1, wn_col2 = st.columns(2)
|
| 267 |
+
with wn_col1:
|
| 268 |
+
wn_min = st.number_input("Min", value=400.0, step=10.0)
|
| 269 |
+
with wn_col2:
|
| 270 |
+
wn_max = st.number_input("Max", value=4000.0, step=10.0)
|
| 271 |
+
|
| 272 |
+
# Process image
|
| 273 |
+
if st.button("Process Image", type="primary"):
|
| 274 |
+
with st.spinner("Processing image..."):
|
| 275 |
+
# Preprocess image
|
| 276 |
+
processed_image = processor.preprocess_image(
|
| 277 |
+
image,
|
| 278 |
+
target_size=(target_width, target_height),
|
| 279 |
+
enhance_contrast=enhance_contrast,
|
| 280 |
+
apply_gaussian_blur=apply_blur,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Extract spectrum
|
| 284 |
+
wavenumbers, spectrum = processor.image_to_spectrum(
|
| 285 |
+
processed_image,
|
| 286 |
+
wavenumber_range=(wn_min, wn_max),
|
| 287 |
+
method=extraction_method,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Detect peaks
|
| 291 |
+
peaks = processor.detect_spectral_peaks(spectrum, wavenumbers)
|
| 292 |
+
|
| 293 |
+
# Create visualization
|
| 294 |
+
fig = processor.create_visualization(
|
| 295 |
+
processed_image, wavenumbers, spectrum, peaks
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# Display visualization
|
| 299 |
+
st.pyplot(fig)
|
| 300 |
+
|
| 301 |
+
# Display peaks information
|
| 302 |
+
if peaks:
|
| 303 |
+
st.markdown("##### Detected Peaks")
|
| 304 |
+
peak_df = pd.DataFrame(peaks)
|
| 305 |
+
peak_df["wavenumber"] = peak_df["wavenumber"].round(2)
|
| 306 |
+
peak_df["intensity"] = peak_df["intensity"].round(4)
|
| 307 |
+
st.dataframe(peak_df)
|
| 308 |
+
|
| 309 |
+
# Store in session state for further analysis
|
| 310 |
+
st.session_state["image_spectrum_x"] = wavenumbers
|
| 311 |
+
st.session_state["image_spectrum_y"] = spectrum
|
| 312 |
+
st.session_state["image_peaks"] = peaks
|
| 313 |
+
|
| 314 |
+
st.success(
|
| 315 |
+
"Image processing complete! You can now use this data for model inference."
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
# Option to run inference on extracted spectrum
|
| 319 |
+
if st.button("Run Inference on Extracted Spectrum"):
|
| 320 |
+
|
| 321 |
+
# Preprocess extracted spectrum
|
| 322 |
+
modality = st.session_state.get("modality_select", "raman")
|
| 323 |
+
_, y_processed = preprocess_spectrum(
|
| 324 |
+
wavenumbers, spectrum, modality=modality, target_len=500
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
# Get selected model
|
| 328 |
+
model_choice = st.session_state.get("model_select", "figure2")
|
| 329 |
+
if " " in model_choice:
|
| 330 |
+
model_choice = model_choice.split(" ", 1)[1]
|
| 331 |
+
|
| 332 |
+
# Run inference
|
| 333 |
+
prediction, logits_list, probs, inference_time, logits = (
|
| 334 |
+
run_inference(y_processed, model_choice)
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
if prediction is not None:
|
| 338 |
+
class_names = ["Stable", "Weathered"]
|
| 339 |
+
predicted_class = (
|
| 340 |
+
class_names[int(prediction)]
|
| 341 |
+
if prediction < len(class_names)
|
| 342 |
+
else f"Class_{prediction}"
|
| 343 |
+
)
|
| 344 |
+
confidence = max(probs) if probs and len(probs) > 0 else 0.0
|
| 345 |
+
|
| 346 |
+
# Display results
|
| 347 |
+
st.markdown("##### Inference Results")
|
| 348 |
+
result_col1, result_col2 = st.columns(2)
|
| 349 |
+
|
| 350 |
+
with result_col1:
|
| 351 |
+
st.metric("Prediction", predicted_class)
|
| 352 |
+
st.metric("Confidence", f"{confidence:.3f}")
|
| 353 |
+
|
| 354 |
+
with result_col2:
|
| 355 |
+
st.metric("Model Used", model_choice)
|
| 356 |
+
st.metric("Processing Time", f"{inference_time:.3f}s")
|
| 357 |
+
|
| 358 |
+
# Show class probabilities
|
| 359 |
+
if probs:
|
| 360 |
+
st.markdown("**Class Probabilities**")
|
| 361 |
+
for i, prob in enumerate(probs):
|
| 362 |
+
if i < len(class_names):
|
| 363 |
+
st.write(f"- {class_names[i]}: {prob:.4f}")
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
def image_to_spectrum_converter(
|
| 367 |
+
image_path: str,
|
| 368 |
+
wavenumber_range: Tuple[float, float] = (400, 4000),
|
| 369 |
+
method: str = "average",
|
| 370 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 371 |
+
"""Convert image file to spectrum data (utility function)."""
|
| 372 |
+
processor = SpectralImageProcessor()
|
| 373 |
+
|
| 374 |
+
# Load image
|
| 375 |
+
image = processor.load_image(image_path)
|
| 376 |
+
if image is None:
|
| 377 |
+
raise ValueError(f"Could not load image from {image_path}.")
|
| 378 |
+
|
| 379 |
+
# Convert to spectrum
|
| 380 |
+
return processor.image_to_spectrum(image, wavenumber_range, method)
|