""" Tests for the training manager functionality. """ import pytest import tempfile import shutil from pathlib import Path import numpy as np import torch import json import pandas as pd from utils.training_manager import ( TrainingManager, TrainingConfig, TrainingStatus, get_training_manager, CVStrategy, get_cv_splitter, calculate_spectroscopy_metrics, augment_spectral_data, spectral_cosine_similarity, ) def create_test_dataset(dataset_path: Path, num_samples: int = 10): """Create a test dataset for training""" # Create directories (dataset_path / "stable").mkdir(parents=True, exist_ok=True) (dataset_path / "weathered").mkdir(parents=True, exist_ok=True) # Generate synthetic spectra wavenumbers = np.linspace(400, 4000, 200) for i in range(num_samples // 2): # Stable samples intensities = np.random.normal(0.5, 0.1, len(wavenumbers)) data = np.column_stack([wavenumbers, intensities]) np.savetxt(dataset_path / "stable" / f"stable_{i}.txt", data) # Weathered samples intensities = np.random.normal(0.3, 0.1, len(wavenumbers)) data = np.column_stack([wavenumbers, intensities]) np.savetxt(dataset_path / "weathered" / f"weathered_{i}.txt", data) @pytest.fixture def temp_dataset(): """Create temporary dataset for testing""" temp_dir = Path(tempfile.mkdtemp()) dataset_path = temp_dir / "test_dataset" create_test_dataset(dataset_path) yield dataset_path shutil.rmtree(temp_dir) @pytest.fixture def training_manager(): """Create training manager for testing""" temp_dir = Path(tempfile.mkdtemp()) # Use ThreadPoolExecutor for tests to avoid multiprocessing complexities manager = TrainingManager( max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False ) yield manager manager.shutdown() shutil.rmtree(temp_dir) def test_training_config(): """Test training configuration creation""" config = TrainingConfig( model_name="figure2", dataset_path="/test/path", epochs=5, batch_size=8 ) assert config.model_name == "figure2" assert config.epochs == 5 assert config.batch_size == 8 assert config.device == "auto" def test_training_manager_initialization(training_manager): """Test training manager initialization""" assert training_manager.max_workers == 1 assert len(training_manager.jobs) == 0 def test_submit_training_job(training_manager, temp_dataset): """Test submitting a training job""" config = TrainingConfig( model_name="figure2", dataset_path=str(temp_dataset), epochs=1, batch_size=4 ) job_id = training_manager.submit_training_job(config) assert job_id is not None assert len(job_id) > 0 assert job_id in training_manager.jobs job = training_manager.get_job_status(job_id) assert job is not None assert job.config.model_name == "figure2" def test_training_job_execution(training_manager, temp_dataset): """Test actual training job execution (lightweight test)""" config = TrainingConfig( model_name="figure2", dataset_path=str(temp_dataset), epochs=1, num_folds=2, # Reduced for testing batch_size=4, ) job_id = training_manager.submit_training_job(config) # Wait a moment for job to start import time time.sleep(1) job = training_manager.get_job_status(job_id) assert job.status in [ TrainingStatus.PENDING, TrainingStatus.RUNNING, TrainingStatus.COMPLETED, TrainingStatus.FAILED, ] def test_list_jobs(training_manager, temp_dataset): """Test listing jobs with filters""" config = TrainingConfig( model_name="figure2", dataset_path=str(temp_dataset), epochs=1 ) job_id = training_manager.submit_training_job(config) all_jobs = training_manager.list_jobs() assert len(all_jobs) >= 1 pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING) running_jobs = training_manager.list_jobs(TrainingStatus.RUNNING) # Job should be in one of these states assert len(pending_jobs) + len(running_jobs) >= 1 def test_global_training_manager(): """Test global training manager singleton""" manager1 = get_training_manager() manager2 = get_training_manager() assert manager1 is manager2 # Should be same instance def test_device_selection(training_manager): """Test device selection logic""" # Test auto device selection device = training_manager._get_device("auto") assert device.type in ["cpu", "cuda"] # Test CPU selection device = training_manager._get_device("cpu") assert device.type == "cpu" # Test CUDA selection (should fallback to CPU if not available) device = training_manager._get_device("cuda") if torch.cuda.is_available(): assert device.type == "cuda" else: assert device.type == "cpu" def test_invalid_dataset_path(training_manager): """Test handling of invalid dataset path""" config = TrainingConfig( model_name="figure2", dataset_path="/nonexistent/path", epochs=1 ) job_id = training_manager.submit_training_job(config) # Wait for job to process import time time.sleep(2) job = training_manager.get_job_status(job_id) assert job.status == TrainingStatus.FAILED assert "dataset" in job.error_message.lower() def test_configurable_cv_strategies(): """Test different cross-validation strategies""" # Test StratifiedKFold skf = get_cv_splitter("stratified_kfold", n_splits=5) assert hasattr(skf, "split") # Test KFold kf = get_cv_splitter("kfold", n_splits=5) assert hasattr(kf, "split") # Test TimeSeriesSplit tss = get_cv_splitter("time_series_split", n_splits=5) assert hasattr(tss, "split") # Test default fallback default = get_cv_splitter("invalid_strategy", n_splits=5) assert hasattr(default, "split") def test_spectroscopy_metrics(): """Test spectroscopy-specific metrics calculation""" # Create test data y_true = np.array([0, 0, 1, 1, 0, 1]) y_pred = np.array([0, 1, 1, 1, 0, 0]) probabilities = np.array( [[0.8, 0.2], [0.4, 0.6], [0.3, 0.7], [0.2, 0.8], [0.9, 0.1], [0.6, 0.4]] ) metrics = calculate_spectroscopy_metrics(y_true, y_pred, probabilities) # Check that all expected metrics are present assert "accuracy" in metrics assert "f1_score" in metrics assert "cosine_similarity" in metrics assert "distribution_similarity" in metrics # Check that metrics are reasonable assert 0 <= metrics["accuracy"] <= 1 assert 0 <= metrics["f1_score"] <= 1 assert -1 <= metrics["cosine_similarity"] <= 1 assert 0 <= metrics["distribution_similarity"] <= 1 def test_spectral_cosine_similarity(): """Test cosine similarity calculation for spectral data""" # Create test spectra spectrum1 = np.array([1, 2, 3, 4, 5]) spectrum2 = np.array([2, 4, 6, 8, 10]) # Perfect correlation spectrum3 = np.array([5, 4, 3, 2, 1]) # Anti-correlation # Test perfect correlation sim1 = spectral_cosine_similarity(spectrum1, spectrum2) assert abs(sim1 - 1.0) < 1e-10 # Test that similarity exists sim2 = spectral_cosine_similarity(spectrum1, spectrum3) assert -1 <= sim2 <= 1 # Valid cosine similarity range # Test self-similarity sim3 = spectral_cosine_similarity(spectrum1, spectrum1) assert abs(sim3 - 1.0) < 1e-10 def test_data_augmentation(): """Test spectral data augmentation""" # Create test data X = np.random.rand(10, 100) y = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) # Test augmentation X_aug, y_aug = augment_spectral_data(X, y, noise_level=0.01, augmentation_factor=3) # Check that data is augmented assert X_aug.shape[0] == X.shape[0] * 3 assert y_aug.shape[0] == y.shape[0] * 3 assert X_aug.shape[1] == X.shape[1] # Same number of features # Test no augmentation X_no_aug, y_no_aug = augment_spectral_data(X, y, augmentation_factor=1) assert np.array_equal(X_no_aug, X) assert np.array_equal(y_no_aug, y) def test_enhanced_training_config(): """Test enhanced training configuration with new parameters""" config = TrainingConfig( model_name="figure2", dataset_path="/test/path", cv_strategy="time_series_split", enable_augmentation=True, noise_level=0.02, spectral_weight=0.2, ) assert config.cv_strategy == "time_series_split" assert config.enable_augmentation == True assert config.noise_level == 0.02 assert config.spectral_weight == 0.2 # Test serialization includes new fields config_dict = config.to_dict() assert "cv_strategy" in config_dict assert "enable_augmentation" in config_dict assert "noise_level" in config_dict assert "spectral_weight" in config_dict def test_enhanced_dataset_loading_security(): """Test enhanced dataset loading with security features""" temp_dir = Path(tempfile.mkdtemp()) training_manager = TrainingManager( max_workers=1, output_dir=str(temp_dir), use_multiprocessing=False ) try: # Create a test dataset with different file formats dataset_dir = temp_dir / "test_dataset" (dataset_dir / "stable").mkdir(parents=True) (dataset_dir / "weathered").mkdir(parents=True) # Create multiple files to meet minimum requirements for i in range(6): # Create 6 files per class # Create CSV files csv_data = pd.DataFrame( { "wavenumber": np.linspace(400, 4000, 100), "intensity": np.random.rand(100), } ) csv_data.to_csv( dataset_dir / "stable" / f"test_stable_{i}.csv", index=False ) # Create JSON files json_data = { "x": np.linspace(400, 4000, 100).tolist(), "y": np.random.rand(100).tolist(), } with open(dataset_dir / "weathered" / f"test_weathered_{i}.json", "w") as f: json.dump(json_data, f) # Test configuration with enhanced features config = TrainingConfig( model_name="figure2", dataset_path=str(dataset_dir), epochs=1, cv_strategy="kfold", enable_augmentation=True, noise_level=0.01, ) # Test that the enhanced loading works from utils.training_manager import TrainingJob, TrainingProgress job = TrainingJob(job_id="test", config=config, progress=TrainingProgress()) # This should work with the enhanced data loading X, y = training_manager._load_and_preprocess_data(job) # Should load data from multiple formats assert X is not None assert y is not None assert len(X) >= 10 # Should have at least 10 samples total # Test that we have both classes unique_classes = np.unique(y) assert len(unique_classes) >= 2 finally: training_manager.shutdown() shutil.rmtree(temp_dir) if __name__ == "__main__": pytest.main([__file__])