from dotenv import load_dotenv load_dotenv() from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, Float, insert, text, # Import text to be used in sql_engine tool ) from sqlalchemy import inspect from smolagents import tool, CodeAgent, InferenceClientModel engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() def insert_rows_into_table(data_rows, target_table, engine=engine): for row in data_rows: stmt = insert(target_table).values(**row) with engine.begin() as connection: connection.execute(stmt) table_name = "receipts" # Corrected receipts table definition receipts = Table( table_name, metadata_obj, Column("receipt_id", Integer, primary_key=True), Column("customer_name", String(255)), # Added customer_name column Column("price", Float), Column("tip", Float), ) metadata_obj.create_all(engine) rows = [ {"receipt_id": 1, "customer_name": "Alex Payne", "price": 12.06, "tip": 1.20}, {"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, {"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, {"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, ] insert_rows_into_table(rows, receipts) inspector = inspect(engine) columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] table_description = "Columns:\n" + "\n".join( [f" - {name}: {col_type}" for name, col_type in columns_info] ) print(table_description) @tool def sql_engine(query: str) -> str: """ Allows you to perform SQL queries on the table. Returns a string representation of the result. The table is named 'receipts'. It's description is as follows: Columns: - receipt_id: INTEGER - customer_name: STRING - price: FLOAT - tip: FLOAT Args: query: The query to perform. This should be correct SQL. """ output = "" with engine.connect() as con: rows = con.execute(text(query)) for row in rows: output += "\n" + str(row) return output agent = CodeAgent( tools=[sql_engine], model=InferenceClientModel(model_id="meta-llama/Llama-3.1-8B-Instruct"), ) agent.run("Can you give me the name of the client who got the most expensive receipt?") table_name = "waiters" waiters = Table( table_name, metadata_obj, Column("receipt_id", Integer, primary_key=True), Column("waiter_name", String(16), primary_key=True), ) metadata_obj.create_all(engine) rows = [ {"receipt_id": 1, "waiter_name": "Corey Johnson"}, {"receipt_id": 2, "waiter_name": "Michael Watts"}, {"receipt_id": 3, "waiter_name": "Michael Watts"}, {"receipt_id": 4, "waiter_name": "Margaret James"}, ] insert_rows_into_table(rows, waiters) updated_description = """Allows you to perform SQL queries on the table. Beware that this tool's output is a string representation of the execution output. It can use the following tables:""" inspector = inspect(engine) for table in ["receipts", "waiters"]: columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(table)] table_description = f"Table '{table}':\n" table_description += "Columns:\n" + "\n".join( [f" - {name}: {col_type}" for name, col_type in columns_info] ) updated_description += "\n\n" + table_description print(updated_description) sql_engine.description = updated_description agent = CodeAgent( tools=[sql_engine], model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), ) agent.run("Which waiter got more total money from tips?")