Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,65 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import argparse
|
| 4 |
-
from functools import partial
|
| 5 |
import cv2
|
| 6 |
-
import requests
|
| 7 |
-
import os
|
| 8 |
-
from io import BytesIO
|
| 9 |
from PIL import Image
|
| 10 |
import numpy as np
|
| 11 |
-
from pathlib import Path
|
| 12 |
|
| 13 |
|
| 14 |
import warnings
|
| 15 |
-
|
| 16 |
import torch
|
| 17 |
warnings.filterwarnings("ignore")
|
| 18 |
|
| 19 |
-
|
| 20 |
-
from
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
import groundingdino.datasets.transforms as T
|
| 24 |
-
|
| 25 |
-
from huggingface_hub import hf_hub_download
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
# Use this command for evaluate the GLIP-T model
|
| 29 |
-
config_file = "groundingdino/config/GroundingDINO_SwinB_cfg.py"
|
| 30 |
-
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
| 31 |
-
ckpt_filenmae = "groundingdino_swinb_cogcoor.pth"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
| 35 |
-
args = SLConfig.fromfile(model_config_path)
|
| 36 |
-
model = build_model(args)
|
| 37 |
-
args.device = device
|
| 38 |
-
|
| 39 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 40 |
-
checkpoint = torch.load(cache_file, map_location=device)
|
| 41 |
-
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
| 42 |
-
print("Model loaded from {} \n => {}".format(cache_file, log))
|
| 43 |
-
_ = model.eval()
|
| 44 |
-
return model
|
| 45 |
-
|
| 46 |
-
def image_transform_grounding(init_image):
|
| 47 |
-
transform = T.Compose([
|
| 48 |
-
T.RandomResize([800], max_size=1333),
|
| 49 |
-
T.ToTensor(),
|
| 50 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 51 |
-
])
|
| 52 |
-
image, _ = transform(init_image, None) # 3, h, w
|
| 53 |
-
return init_image, image
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
T.RandomResize([800], max_size=1333),
|
| 58 |
-
])
|
| 59 |
-
image, _ = transform(init_image, None) # 3, h, w
|
| 60 |
-
return image
|
| 61 |
|
| 62 |
-
model
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
| 65 |
# Convert numpy array to PIL Image if needed
|
|
@@ -69,16 +31,86 @@ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold)
|
|
| 69 |
input_image = Image.fromarray(input_image)
|
| 70 |
|
| 71 |
init_image = input_image.convert("RGB")
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
return image_with_box
|
| 83 |
|
| 84 |
if __name__ == "__main__":
|
|
@@ -98,17 +130,16 @@ if __name__ == "__main__":
|
|
| 98 |
with gr.Blocks(css=css) as demo:
|
| 99 |
gr.Markdown("<h1><center>Grounding DINO<h1><center>")
|
| 100 |
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
|
| 101 |
-
gr.Markdown("<h3><center>Running on CPU, so it may take a while to run the model.<h3><center>")
|
| 102 |
|
| 103 |
with gr.Row():
|
| 104 |
with gr.Column():
|
| 105 |
input_image = gr.Image(label="Input Image", type="pil")
|
| 106 |
-
grounding_caption = gr.Textbox(label="Detection Prompt")
|
| 107 |
run_button = gr.Button("Run")
|
| 108 |
|
| 109 |
with gr.Accordion("Advanced options", open=False):
|
| 110 |
box_threshold = gr.Slider(
|
| 111 |
-
minimum=0.0, maximum=1.0, value=0.
|
| 112 |
label="Box Threshold"
|
| 113 |
)
|
| 114 |
text_threshold = gr.Slider(
|
|
@@ -129,11 +160,14 @@ if __name__ == "__main__":
|
|
| 129 |
)
|
| 130 |
|
| 131 |
gr.Examples(
|
| 132 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
| 133 |
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
|
| 134 |
outputs=[gallery],
|
| 135 |
fn=run_grounding,
|
| 136 |
cache_examples=True,
|
| 137 |
)
|
| 138 |
|
| 139 |
-
demo.launch(share=args.share, debug=args.debug, show_error=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import argparse
|
|
|
|
| 4 |
import cv2
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import numpy as np
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
import warnings
|
|
|
|
| 10 |
import torch
|
| 11 |
warnings.filterwarnings("ignore")
|
| 12 |
|
| 13 |
+
# Replace custom imports with Transformers
|
| 14 |
+
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
| 15 |
+
# Add supervision for better visualization
|
| 16 |
+
import supervision as sv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
# Model ID for Hugging Face
|
| 19 |
+
model_id = "IDEA-Research/grounding-dino-base"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Load model and processor using Transformers
|
| 22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 24 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
|
| 25 |
|
| 26 |
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
| 27 |
# Convert numpy array to PIL Image if needed
|
|
|
|
| 31 |
input_image = Image.fromarray(input_image)
|
| 32 |
|
| 33 |
init_image = input_image.convert("RGB")
|
| 34 |
+
|
| 35 |
+
# Process input using transformers
|
| 36 |
+
inputs = processor(images=init_image, text=grounding_caption, return_tensors="pt").to(device)
|
| 37 |
+
|
| 38 |
+
# Run inference
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
|
| 42 |
+
# Post-process results
|
| 43 |
+
results = processor.post_process_grounded_object_detection(
|
| 44 |
+
outputs,
|
| 45 |
+
inputs.input_ids,
|
| 46 |
+
box_threshold=box_threshold,
|
| 47 |
+
text_threshold=text_threshold,
|
| 48 |
+
target_sizes=[init_image.size[::-1]]
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
result = results[0]
|
| 52 |
+
|
| 53 |
+
# Convert image for supervision visualization
|
| 54 |
+
image_np = np.array(init_image)
|
| 55 |
+
|
| 56 |
+
# Create detections for supervision
|
| 57 |
+
boxes = []
|
| 58 |
+
labels = []
|
| 59 |
+
confidences = []
|
| 60 |
+
class_ids = []
|
| 61 |
+
|
| 62 |
+
for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
|
| 63 |
+
# Convert box to xyxy format
|
| 64 |
+
xyxy = box.tolist()
|
| 65 |
+
boxes.append(xyxy)
|
| 66 |
+
labels.append(label)
|
| 67 |
+
confidences.append(float(score))
|
| 68 |
+
class_ids.append(i) # Use index as class_id (integer)
|
| 69 |
+
|
| 70 |
+
# Create Detections object for supervision
|
| 71 |
+
if boxes:
|
| 72 |
+
detections = sv.Detections(
|
| 73 |
+
xyxy=np.array(boxes),
|
| 74 |
+
confidence=np.array(confidences),
|
| 75 |
+
class_id=np.array(class_ids, dtype=np.int32), # Ensure it's an integer array
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=init_image.size)
|
| 79 |
+
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=init_image.size)
|
| 80 |
+
|
| 81 |
+
# Create annotators
|
| 82 |
+
box_annotator = sv.BoxAnnotator(
|
| 83 |
+
thickness=2,
|
| 84 |
+
color=sv.ColorPalette.DEFAULT,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
label_annotator = sv.LabelAnnotator(
|
| 88 |
+
color=sv.ColorPalette.DEFAULT,
|
| 89 |
+
text_color=sv.Color.WHITE,
|
| 90 |
+
text_scale=text_scale,
|
| 91 |
+
text_thickness=line_thickness,
|
| 92 |
+
text_padding=3
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Create formatted labels for each detection
|
| 96 |
+
formatted_labels = [
|
| 97 |
+
f"{label}: {conf:.2f}"
|
| 98 |
+
for label, conf in zip(labels, confidences)
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
# Apply annotations to the image
|
| 102 |
+
annotated_image = box_annotator.annotate(scene=image_np, detections=detections)
|
| 103 |
+
annotated_image = label_annotator.annotate(
|
| 104 |
+
scene=annotated_image,
|
| 105 |
+
detections=detections,
|
| 106 |
+
labels=formatted_labels
|
| 107 |
+
)
|
| 108 |
+
else:
|
| 109 |
+
annotated_image = image_np
|
| 110 |
+
|
| 111 |
+
# Convert back to PIL Image
|
| 112 |
+
image_with_box = Image.fromarray(annotated_image)
|
| 113 |
+
|
| 114 |
return image_with_box
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
|
|
|
| 130 |
with gr.Blocks(css=css) as demo:
|
| 131 |
gr.Markdown("<h1><center>Grounding DINO<h1><center>")
|
| 132 |
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
|
|
|
|
| 133 |
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column():
|
| 136 |
input_image = gr.Image(label="Input Image", type="pil")
|
| 137 |
+
grounding_caption = gr.Textbox(label="Detection Prompt(VERY important: text queries need to be lowercased + end with a dot, example: a cat. a remote control.)", value="a person. a car.")
|
| 138 |
run_button = gr.Button("Run")
|
| 139 |
|
| 140 |
with gr.Accordion("Advanced options", open=False):
|
| 141 |
box_threshold = gr.Slider(
|
| 142 |
+
minimum=0.0, maximum=1.0, value=0.3, step=0.001,
|
| 143 |
label="Box Threshold"
|
| 144 |
)
|
| 145 |
text_threshold = gr.Slider(
|
|
|
|
| 160 |
)
|
| 161 |
|
| 162 |
gr.Examples(
|
| 163 |
+
examples=[
|
| 164 |
+
["000000039769.jpg", "a cat. a remote control.", 0.3, 0.25],
|
| 165 |
+
["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", 0.3, 0.25]
|
| 166 |
+
],
|
| 167 |
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
|
| 168 |
outputs=[gallery],
|
| 169 |
fn=run_grounding,
|
| 170 |
cache_examples=True,
|
| 171 |
)
|
| 172 |
|
| 173 |
+
demo.launch(share=args.share, debug=args.debug, show_error=True)
|