Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification | |
| from safetensors.torch import load_file as safe_load | |
| target_to_ind = {'cs': 0, 'econ': 1, 'eess': 2, 'math': 3, 'phys': 4, 'q-bio': 5, 'q-fin': 6, 'stat': 7} | |
| target_to_label = {'cs': 'Computer Science', 'econ': 'Economics', 'eess': 'Electrical Engineering and Systems Science', 'math': 'Mathematics', 'phys': 'Physics', | |
| 'q-bio': 'Quantitative Biology', 'q-fin': 'Quantitative Finance', 'stat': 'Statistics'} | |
| ind_to_target = {ind: target for target, ind in target_to_ind.items()} | |
| st.title('papers_classifier π€') | |
| def display_intro(): | |
| intro_text = """ | |
| Hey! I'm papers_classifier and I'm here to help you with answering the question 'WTF is this paper about?' | |
| According to arXiv there are 8 different fields of study: | |
| - Computer Science | |
| - Economics | |
| - Electrical Engineering and Systems Science | |
| - Mathematics | |
| - Physics | |
| - Quantitative Biology | |
| - Quantitative Finance | |
| - Statistics | |
| Everything I'll tell you will be about these eight fields. | |
| How to use me: | |
| 1. Give me paper's title and (if you have one) it's abstract | |
| 2. Choose one of two classification modes: | |
| - Best prediction: Shows the most likely to be true field | |
| - Top 95%: Shows multiple fields until I'm at least 95% confident that the correct one is among them | |
| 3. Press the 'Get prediction' button | |
| 4. Wait for me to tell you which fields of study this paper relates to | |
| """ | |
| st.markdown(intro_text) | |
| # Call the function to display the introduction | |
| display_intro() | |
| def load_model_and_tokenizer(): | |
| model_name = 'distilbert/distilbert-base-cased' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(target_to_ind)) | |
| state_dict = safe_load("model.safetensors") | |
| model.load_state_dict(state_dict) | |
| return model, tokenizer | |
| model, tokenizer = load_model_and_tokenizer() | |
| def get_predict(title: str, abstract: str) -> (str, float, dict): | |
| text = [title + tokenizer.sep_token + abstract[:128]] | |
| tokens_info = tokenizer( | |
| text, | |
| padding=True, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| with torch.no_grad(): | |
| out = model(**tokens_info) | |
| probs = torch.nn.functional.softmax(out.logits, dim=-1).tolist()[0] | |
| return list(sorted([(p, ind_to_target[i]) for i, p in enumerate(probs)]))[::-1] | |
| title = st.text_area("Title ", "", height=100) | |
| abstract = st.text_area("Abstract ", "", height=150) | |
| mode = st.radio("Mode: ", ("Best prediction", "Top 95%")) | |
| if st.button("Get prediction", key="manual"): | |
| if len(title) == 0: | |
| st.error("Please, provide paper's title") | |
| else: | |
| with st.spinner("Be patient, I'm doing my best"): | |
| predict = get_predict(title, abstract) | |
| tags = [] | |
| threshold = 0 if mode == "Best prediction" else 0.95 | |
| sum_p = 0 | |
| for p, tag in predict: | |
| sum_p += p | |
| tags.append(target_to_label[tag]) | |
| if sum_p >= threshold: | |
| break | |
| tags = '\n\n'.join(tags) | |
| st.success(tags) | |