Spaces:
Running
on
Zero
Running
on
Zero
first
Browse files- README.md +133 -12
- app.py +255 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,133 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MedGemma ZeroGPU Gradio Space
|
| 2 |
+
|
| 3 |
+
This repository contains a minimal **Gradio** application that wraps
|
| 4 |
+
Google’s `medgemma‑27b‑it` multi‑modal model and exposes it via a
|
| 5 |
+
browser‑based interface. The app is designed to run on **Hugging Face
|
| 6 |
+
Spaces** configured with the **ZeroGPU (Dynamic resources)** option.
|
| 7 |
+
ZeroGPU dynamically allocates and releases NVIDIA H200 GPU slices on
|
| 8 |
+
demand. Existing ZeroGPU Spaces can be used for free, and the
|
| 9 |
+
infrastructure supports multi‑GPU allocation for large models【283503741553473†L104-L132】.
|
| 10 |
+
However, hosting your own ZeroGPU Space requires a PRO or Enterprise
|
| 11 |
+
Hub subscription【283503741553473†L118-L127】. ZeroGPU Spaces are only
|
| 12 |
+
compatible with the **Gradio SDK** and specific versions of PyTorch and
|
| 13 |
+
Python【916380489845432†L110-L118】, which is why this project uses Gradio
|
| 14 |
+
instead of a raw FastAPI server.
|
| 15 |
+
|
| 16 |
+
## Features
|
| 17 |
+
|
| 18 |
+
- **English‑only input and output** – The interface accepts a question in
|
| 19 |
+
English and returns the model’s answer in English. A disclaimer is
|
| 20 |
+
appended to every response reminding users to consult a medical
|
| 21 |
+
professional.
|
| 22 |
+
- **Multi‑modal support** – Optionally upload an image to provide
|
| 23 |
+
additional context for the model. The input text and image are
|
| 24 |
+
processed together.
|
| 25 |
+
- **Custom system prompt** – You can supply your own system prompt to
|
| 26 |
+
steer the model’s behaviour. If omitted a default radiology assistant
|
| 27 |
+
instruction is used.
|
| 28 |
+
- **Optional API key** – If you set an `API_KEY` secret in your Space,
|
| 29 |
+
the UI will display a hidden API key field. Clients must enter the
|
| 30 |
+
same value when calling the model; otherwise the request is rejected.
|
| 31 |
+
- **ZeroGPU integration** – The heavy computation is wrapped in a
|
| 32 |
+
function decorated with `@spaces.GPU`, which allocates an H200 slice
|
| 33 |
+
for the duration of the call and releases it afterwards.
|
| 34 |
+
|
| 35 |
+
## Setup
|
| 36 |
+
|
| 37 |
+
1. **Create a Gradio Space** on Hugging Face. Choose the **ZeroGPU
|
| 38 |
+
(Dynamic resources)** hardware option and select the **NVIDIA H200**
|
| 39 |
+
accelerator. If ZeroGPU or H200 does not appear in the hardware
|
| 40 |
+
selector you may need to upgrade to a PRO plan【283503741553473†L118-L127】.
|
| 41 |
+
|
| 42 |
+
2. **Add secrets** in your Space settings. Under **Settings → Secrets**:
|
| 43 |
+
- `HF_TOKEN` – a Hugging Face access token with permission to
|
| 44 |
+
download `google/medgemma-27b-it`. Without this token the model
|
| 45 |
+
cannot be loaded. The Hugging Face documentation recommends
|
| 46 |
+
storing tokens and API keys in secrets rather than hard‑coding
|
| 47 |
+
them【188898489867690†L175-L193】.
|
| 48 |
+
- `API_KEY` (optional) – a random string used to protect your Space.
|
| 49 |
+
If set, callers must provide the same value in the API key field
|
| 50 |
+
when using the interface or when calling the model programmatically.
|
| 51 |
+
|
| 52 |
+
3. **Upload the files** in this repository to your Space. The
|
| 53 |
+
`app.py` file defines the Gradio interface and lazy‑loads the model.
|
| 54 |
+
The `requirements.txt` lists the Python dependencies.
|
| 55 |
+
|
| 56 |
+
4. Once the Space is built, open it in your browser. Enter your
|
| 57 |
+
question, optionally upload an image, and click *Submit*. The model
|
| 58 |
+
will run on an H200 slice and return an answer.
|
| 59 |
+
|
| 60 |
+
## Programmatic access with `gradio_client`
|
| 61 |
+
|
| 62 |
+
You can call this Space from your own Python code using the
|
| 63 |
+
[`gradio_client`](https://github.com/gradio-app/gradio/tree/main/client) package. The client
|
| 64 |
+
connects to the Space and invokes the `/predict` endpoint. If you have
|
| 65 |
+
configured an API key, supply it as the last argument. Example:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from gradio_client import Client
|
| 69 |
+
|
| 70 |
+
space_name = "<user>/<space>" # replace with your Space
|
| 71 |
+
client = Client(space_name)
|
| 72 |
+
|
| 73 |
+
# Prepare inputs: prompt, image (None), system prompt, api_key
|
| 74 |
+
result = client.predict(
|
| 75 |
+
"Please examine this chest X‑ray.",
|
| 76 |
+
None,
|
| 77 |
+
"You are a concise radiology assistant.",
|
| 78 |
+
"my_secret_key", # or omit if API_KEY is not set
|
| 79 |
+
api_name="/predict",
|
| 80 |
+
)
|
| 81 |
+
print(result)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
The inputs must be provided in the same order as defined in `app.py`:
|
| 85 |
+
1. **prompt** (string) – required
|
| 86 |
+
2. **image** (`PIL.Image.Image` or `None`) – optional
|
| 87 |
+
3. **system_prompt** (string or `None`) – optional
|
| 88 |
+
4. **api_key** (string or `None`) – required only if you set `API_KEY`
|
| 89 |
+
|
| 90 |
+
If you prefer a cURL call, you can send a JSON payload to the
|
| 91 |
+
`/predict` endpoint. For example:
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
curl -X POST \
|
| 95 |
+
-H "Content-Type: application/json" \
|
| 96 |
+
-d '{"data": ["Please examine this CT scan.", null, "You are a concise radiology assistant.", "my_secret_key"]}' \
|
| 97 |
+
https://huggingface.co/spaces/<user>/<space>/predict
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
Note that Gradio sets the `api_name` of the prediction endpoint to
|
| 101 |
+
`/predict` by default when using `gr.Interface(fn=...)`.
|
| 102 |
+
|
| 103 |
+
## Running locally
|
| 104 |
+
|
| 105 |
+
You can also run this application locally for testing. Install the
|
| 106 |
+
dependencies and start the Gradio server:
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
python3 -m venv venv
|
| 110 |
+
source venv/bin/activate
|
| 111 |
+
pip install -r requirements.txt
|
| 112 |
+
export HF_TOKEN=hf_xxxxxxxxxxxxxxxxxxxxx # set your token
|
| 113 |
+
python app.py
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
Open `http://localhost:7860` in your browser. Running locally will
|
| 117 |
+
execute the model on your machine’s CPU or GPU; the ZeroGPU dynamic
|
| 118 |
+
allocation only works within a Hugging Face Space.
|
| 119 |
+
|
| 120 |
+
## Dependencies
|
| 121 |
+
|
| 122 |
+
The `requirements.txt` file specifies the Python packages needed to run
|
| 123 |
+
this project. It includes Gradio, `spaces` for ZeroGPU support, and the
|
| 124 |
+
transformers library. These versions are selected to be compatible
|
| 125 |
+
with ZeroGPU【916380489845432†L110-L118】.
|
| 126 |
+
|
| 127 |
+
## Disclaimer
|
| 128 |
+
|
| 129 |
+
The MedGemma model is for research and educational purposes only. It
|
| 130 |
+
may generate incorrect or harmful content and should **not** be used for
|
| 131 |
+
medical diagnosis or treatment. Always consult a licensed medical
|
| 132 |
+
professional for health questions. This application appends a
|
| 133 |
+
disclaimer to every response to remind users of these limitations.
|
app.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio application for MedGemma inference with ZeroGPU.
|
| 3 |
+
|
| 4 |
+
This script defines a minimal Gradio interface around Google's
|
| 5 |
+
``medgemma‑27b‑it`` multi‑modal model. It is designed to run on
|
| 6 |
+
Hugging Face Spaces using the **ZeroGPU** hardware option. ZeroGPU
|
| 7 |
+
allocates an NVIDIA H200 GPU slice for the duration of each call and
|
| 8 |
+
releases it afterwards. The interface accepts a textual **prompt**
|
| 9 |
+
(English only), an optional image upload and an optional **system
|
| 10 |
+
prompt** to steer the model. All responses are returned in English and
|
| 11 |
+
include a short disclaimer reminding users to consult a medical
|
| 12 |
+
professional.
|
| 13 |
+
|
| 14 |
+
If you set an ``API_KEY`` secret in your Space, callers must supply the
|
| 15 |
+
same value in the hidden API key field. Otherwise the endpoint will be
|
| 16 |
+
publicly accessible. See the README for details.
|
| 17 |
+
|
| 18 |
+
Note: ZeroGPU Spaces currently only work with the **Gradio** SDK and
|
| 19 |
+
support specific versions of PyTorch and Python【916380489845432†L110-L118】.
|
| 20 |
+
Running this script outside of a Space will work on CPU or dedicated
|
| 21 |
+
GPU hardware, but ZeroGPU GPU allocation only takes effect when the
|
| 22 |
+
Space hardware is set to *ZeroGPU (Dynamic resources)*.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
import os
|
| 26 |
+
from typing import Optional
|
| 27 |
+
|
| 28 |
+
import gradio as gr
|
| 29 |
+
from PIL import Image
|
| 30 |
+
import torch
|
| 31 |
+
from transformers import (
|
| 32 |
+
AutoProcessor,
|
| 33 |
+
AutoModelForImageTextToText,
|
| 34 |
+
GenerationConfig,
|
| 35 |
+
pipeline,
|
| 36 |
+
)
|
| 37 |
+
import spaces # for the @spaces.GPU decorator
|
| 38 |
+
|
| 39 |
+
# ----------------------------------------------------------------------------
|
| 40 |
+
# Configuration
|
| 41 |
+
# ----------------------------------------------------------------------------
|
| 42 |
+
|
| 43 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 44 |
+
if HF_TOKEN is None:
|
| 45 |
+
raise RuntimeError(
|
| 46 |
+
"HF_TOKEN environment variable must be set as a Secret in the Space."
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Optional API key: when set, clients must provide the same value in the
|
| 50 |
+
# hidden ``api_key`` field of the Gradio interface. If not set, no
|
| 51 |
+
# authentication is enforced.
|
| 52 |
+
API_KEY = os.getenv("API_KEY")
|
| 53 |
+
|
| 54 |
+
MODEL_ID = "google/medgemma-27b-it"
|
| 55 |
+
|
| 56 |
+
# Load the processor outside of the GPU context – this is lightweight
|
| 57 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, token=HF_TOKEN, trust_remote_code=True)
|
| 58 |
+
|
| 59 |
+
eos_id = processor.tokenizer.eos_token_id
|
| 60 |
+
pad_id = processor.tokenizer.pad_token_id or eos_id
|
| 61 |
+
|
| 62 |
+
# Banned phrases to reduce chatty or irrelevant responses
|
| 63 |
+
ban_list = [
|
| 64 |
+
"Disclaimer",
|
| 65 |
+
"disclaimer",
|
| 66 |
+
"As an AI Chatbot",
|
| 67 |
+
"as an AI Chatbot",
|
| 68 |
+
"I cannot give medical advice",
|
| 69 |
+
"I cannot provide medical advice",
|
| 70 |
+
"I cannot give medical advise",
|
| 71 |
+
"user",
|
| 72 |
+
"response",
|
| 73 |
+
"display",
|
| 74 |
+
"response>",
|
| 75 |
+
"```",
|
| 76 |
+
"label",
|
| 77 |
+
"tool_code",
|
| 78 |
+
]
|
| 79 |
+
bad_words_ids = [processor.tokenizer(b, add_special_tokens=False).input_ids for b in ban_list]
|
| 80 |
+
|
| 81 |
+
gen_cfg = GenerationConfig(
|
| 82 |
+
max_new_tokens=120,
|
| 83 |
+
do_sample=False,
|
| 84 |
+
repetition_penalty=1.12,
|
| 85 |
+
no_repeat_ngram_size=6,
|
| 86 |
+
length_penalty=1.0,
|
| 87 |
+
temperature=0.0,
|
| 88 |
+
eos_token_id=eos_id,
|
| 89 |
+
pad_token_id=pad_id,
|
| 90 |
+
bad_words_ids=bad_words_ids,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# We'll load the model lazily inside run_model to ensure GPU allocation
|
| 94 |
+
# occurs within the ZeroGPU context. Cache the model and pipeline on
|
| 95 |
+
# first use so subsequent calls are faster. A simple attribute on the
|
| 96 |
+
# function serves as a persistent cache.
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@spaces.GPU(duration=120)
|
| 100 |
+
def run_model(prompt: str, image: Optional[Image.Image], system_prompt: Optional[str]) -> str:
|
| 101 |
+
"""Execute the MedGemma model.
|
| 102 |
+
|
| 103 |
+
This function will be run inside the ZeroGPU allocation context. It
|
| 104 |
+
lazily loads the model and pipeline on first invocation and reuses
|
| 105 |
+
them for subsequent calls. Inputs are combined with an optional
|
| 106 |
+
system prompt to produce the full prompt. The model's output is
|
| 107 |
+
returned as a plain English string.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
prompt: The user's question (English only).
|
| 111 |
+
image: An optional PIL Image. If provided, the model will use
|
| 112 |
+
both text and image modalities; otherwise text-only.
|
| 113 |
+
system_prompt: An optional system prompt to steer the model. If
|
| 114 |
+
None or empty, a default instruction is used.
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
The raw English output from the model (without disclaimer).
|
| 118 |
+
"""
|
| 119 |
+
# Lazy‑load the model and pipeline on first use
|
| 120 |
+
if not hasattr(run_model, "model"):
|
| 121 |
+
# Determine the appropriate dtype and device map. We'll load on
|
| 122 |
+
# auto to split across CPU/GPU if necessary. Use bfloat16 when
|
| 123 |
+
# CUDA is available to save memory on H200.
|
| 124 |
+
model_kwargs: dict = {
|
| 125 |
+
"torch_dtype": torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 126 |
+
"token": HF_TOKEN,
|
| 127 |
+
}
|
| 128 |
+
if torch.cuda.is_available():
|
| 129 |
+
model_kwargs["device_map"] = "auto"
|
| 130 |
+
model = AutoModelForImageTextToText.from_pretrained(MODEL_ID, **model_kwargs)
|
| 131 |
+
# Create a pipeline for convenience
|
| 132 |
+
vlm = pipeline(
|
| 133 |
+
task="image-text-to-text",
|
| 134 |
+
model=model,
|
| 135 |
+
processor=processor,
|
| 136 |
+
generation_config=gen_cfg,
|
| 137 |
+
)
|
| 138 |
+
# Store for reuse
|
| 139 |
+
run_model.model = model
|
| 140 |
+
run_model.vlm = vlm
|
| 141 |
+
else:
|
| 142 |
+
vlm = run_model.vlm
|
| 143 |
+
|
| 144 |
+
# Compose the full prompt
|
| 145 |
+
sys_prompt = (
|
| 146 |
+
system_prompt.strip()
|
| 147 |
+
if system_prompt and system_prompt.strip()
|
| 148 |
+
else "You are a concise radiology assistant. Answer the user's question based on the image and text."
|
| 149 |
+
)
|
| 150 |
+
full_prompt = sys_prompt + "\n" + prompt.strip()
|
| 151 |
+
|
| 152 |
+
# Run inference
|
| 153 |
+
if image is not None:
|
| 154 |
+
result = vlm(image, full_prompt)
|
| 155 |
+
else:
|
| 156 |
+
result = vlm(full_prompt)
|
| 157 |
+
output = result[0]["generated_text"]
|
| 158 |
+
return output
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def predict(
|
| 162 |
+
prompt: str,
|
| 163 |
+
image: Optional[Image.Image] = None,
|
| 164 |
+
system_prompt: Optional[str] = None,
|
| 165 |
+
api_key: Optional[str] = None,
|
| 166 |
+
) -> str:
|
| 167 |
+
"""Wrapper function for Gradio.
|
| 168 |
+
|
| 169 |
+
Handles optional API key authentication and appends a disclaimer to
|
| 170 |
+
the model's output. See README for details.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
prompt: The user's question in English.
|
| 174 |
+
image: An optional PIL image.
|
| 175 |
+
system_prompt: Optional system prompt to steer the model.
|
| 176 |
+
api_key: Optional API key supplied by the client. If the
|
| 177 |
+
``API_KEY`` secret is set and this does not match, the
|
| 178 |
+
request is rejected.
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
A string containing the model's answer followed by a
|
| 182 |
+
disclaimer. If authentication fails an error message is
|
| 183 |
+
returned instead.
|
| 184 |
+
"""
|
| 185 |
+
# Enforce API key if configured
|
| 186 |
+
if API_KEY:
|
| 187 |
+
if api_key is None or api_key != API_KEY:
|
| 188 |
+
return "Error: Invalid or missing API key."
|
| 189 |
+
|
| 190 |
+
# Validate prompt
|
| 191 |
+
if not prompt or not prompt.strip():
|
| 192 |
+
return "Error: Prompt cannot be empty."
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
answer = run_model(prompt, image, system_prompt)
|
| 196 |
+
except Exception as e:
|
| 197 |
+
return f"Error during inference: {e}"
|
| 198 |
+
disclaimer = (
|
| 199 |
+
"\n\nThis response is generated by an AI model and may be incorrect. "
|
| 200 |
+
"Always consult a licensed medical professional for health questions."
|
| 201 |
+
)
|
| 202 |
+
return answer.strip() + disclaimer
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def build_demo() -> gr.Interface:
|
| 206 |
+
"""Construct the Gradio UI for this application."""
|
| 207 |
+
# Define inputs: prompt, optional image, optional system prompt, and
|
| 208 |
+
# optional API key (hidden from the UI). When API_KEY is not
|
| 209 |
+
# configured the api_key input is ignored.
|
| 210 |
+
inputs = [
|
| 211 |
+
gr.Textbox(
|
| 212 |
+
label="Prompt (English only)",
|
| 213 |
+
lines=4,
|
| 214 |
+
placeholder="Describe the medical image or ask a question."
|
| 215 |
+
),
|
| 216 |
+
gr.Image(
|
| 217 |
+
type="pil",
|
| 218 |
+
label="Optional image"
|
| 219 |
+
),
|
| 220 |
+
gr.Textbox(
|
| 221 |
+
label="Optional system prompt",
|
| 222 |
+
lines=2,
|
| 223 |
+
placeholder="e.g. You are a concise radiology assistant."
|
| 224 |
+
),
|
| 225 |
+
gr.Textbox(
|
| 226 |
+
label="API key",
|
| 227 |
+
lines=1,
|
| 228 |
+
placeholder="Enter API key if required",
|
| 229 |
+
type="password",
|
| 230 |
+
visible=bool(API_KEY),
|
| 231 |
+
),
|
| 232 |
+
]
|
| 233 |
+
outputs = gr.Textbox(label="Answer")
|
| 234 |
+
description = (
|
| 235 |
+
"Ask MedGemma a question about a medical image or condition. "
|
| 236 |
+
"Optionally provide a system prompt to guide the model's behaviour. "
|
| 237 |
+
"All responses are in English and include a disclaimer."
|
| 238 |
+
)
|
| 239 |
+
demo = gr.Interface(
|
| 240 |
+
fn=predict,
|
| 241 |
+
inputs=inputs,
|
| 242 |
+
outputs=outputs,
|
| 243 |
+
title="MedGemma ZeroGPU (Gradio)",
|
| 244 |
+
description=description,
|
| 245 |
+
allow_flagging="never",
|
| 246 |
+
)
|
| 247 |
+
return demo
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
demo = build_demo()
|
| 251 |
+
|
| 252 |
+
if __name__ == "__main__":
|
| 253 |
+
# Launch with share=False to bind to the default port. In Spaces this
|
| 254 |
+
# function is not executed; Spaces uses the Gradio SDK to run the app.
|
| 255 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0,<5.0.0
|
| 2 |
+
spaces
|
| 3 |
+
transformers
|
| 4 |
+
torch>=2.1.0
|
| 5 |
+
huggingface-hub>=0.19.1
|
| 6 |
+
Pillow
|
| 7 |
+
# gradio_client is optional but useful for programmatic access
|
| 8 |
+
gradio_client
|