Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import sqlparse | |
| # from modelscope import snapshot_download | |
| # 加载模型和分词器 | |
| model_name = "defog/llama-3-sqlcoder-8b" # 使用更新的模型以提高性能 | |
| # model_name = snapshot_download("stevie/llama-3-sqlcoder-8b") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| use_cache=True, | |
| ) | |
| def generate_sql(user_question, instructions, create_table_statements): | |
| prompt = f"""<|begin_of_text|><|start_header_id|>user<|end_header_id|> | |
| Generate a SQL query to answer this question: `{user_question}` | |
| {instructions} | |
| DDL statements: | |
| {create_table_statements}<|eot_id|><|start_header_id|>assistant<|end_header_id|> | |
| The following SQL query best answers the question `{user_question}`: | |
| ```sql | |
| """ | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
| generated_ids = model.generate( | |
| **inputs, | |
| num_return_sequences=1, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.eos_token_id, | |
| max_new_tokens=400, | |
| do_sample=False, | |
| num_beams=1, | |
| ) | |
| outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
| torch.cuda.empty_cache() | |
| torch.cuda.synchronize() | |
| return sqlparse.format(outputs[0].split("[SQL]")[-1], reindent=True) | |
| question = f"What are our top 3 products by revenue in the New York region?" | |
| instructions = f"""- if the question cannot be answered given the database schema, return "I do not know" | |
| - recall that the current date in YYYY-MM-DD format is 2024-09-15 | |
| """ | |
| schema = f"""CREATE TABLE products ( | |
| product_id INTEGER PRIMARY KEY, -- Unique ID for each product | |
| name VARCHAR(50), -- Name of the product | |
| price DECIMAL(10,2), -- Price of each unit of the product | |
| quantity INTEGER -- Current quantity in stock | |
| ); | |
| CREATE TABLE customers ( | |
| customer_id INTEGER PRIMARY KEY, -- Unique ID for each customer | |
| name VARCHAR(50), -- Name of the customer | |
| address VARCHAR(100) -- Mailing address of the customer | |
| ); | |
| CREATE TABLE salespeople ( | |
| salesperson_id INTEGER PRIMARY KEY, -- Unique ID for each salesperson | |
| name VARCHAR(50), -- Name of the salesperson | |
| region VARCHAR(50) -- Geographic sales region | |
| ); | |
| CREATE TABLE sales ( | |
| sale_id INTEGER PRIMARY KEY, -- Unique ID for each sale | |
| product_id INTEGER, -- ID of product sold | |
| customer_id INTEGER, -- ID of customer who made purchase | |
| salesperson_id INTEGER, -- ID of salesperson who made the sale | |
| sale_date DATE, -- Date the sale occurred | |
| quantity INTEGER -- Quantity of product sold | |
| ); | |
| CREATE TABLE product_suppliers ( | |
| supplier_id INTEGER PRIMARY KEY, -- Unique ID for each supplier | |
| product_id INTEGER, -- Product ID supplied | |
| supply_price DECIMAL(10,2) -- Unit price charged by supplier | |
| ); | |
| -- sales.product_id can be joined with products.product_id | |
| -- sales.customer_id can be joined with customers.customer_id | |
| -- sales.salesperson_id can be joined with salespeople.salesperson_id | |
| -- product_suppliers.product_id can be joined with products.product_id | |
| """ | |
| demo = gr.Interface( | |
| fn=generate_sql, | |
| title="SQLCoder-8b", | |
| description="Defog's SQLCoder-8B is a state of the art-models for generating SQL queries from natural language. ", | |
| inputs=[ | |
| gr.Textbox(label="User Question", placeholder="Enter your question here...", value=question), | |
| gr.Textbox(label="Instructions (optional)", placeholder="Enter any additional instructions here...", value=instructions), | |
| gr.Textbox(label="Create Table Statements", placeholder="Enter DDL statements here...", value=schema), | |
| ], | |
| outputs="text", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |