Spaces:
Runtime error
Runtime error
| import cv2 | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| def fast_process( | |
| annotations, | |
| image, | |
| device, | |
| scale, | |
| better_quality=False, | |
| mask_random_color=True, | |
| bbox=None, | |
| use_retina=True, | |
| withContours=True, | |
| ): | |
| if isinstance(annotations[0], dict): | |
| annotations = [annotation["segmentation"] for annotation in annotations] | |
| original_h = image.height | |
| original_w = image.width | |
| if better_quality: | |
| if isinstance(annotations[0], torch.Tensor): | |
| annotations = np.array(annotations.cpu()) | |
| for i, mask in enumerate(annotations): | |
| mask = cv2.morphologyEx( | |
| mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8) | |
| ) | |
| annotations[i] = cv2.morphologyEx( | |
| mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8) | |
| ) | |
| if device == "cpu": | |
| annotations = np.array(annotations) | |
| inner_mask = fast_show_mask( | |
| annotations, | |
| plt.gca(), | |
| random_color=mask_random_color, | |
| bbox=bbox, | |
| retinamask=use_retina, | |
| target_height=original_h, | |
| target_width=original_w, | |
| ) | |
| else: | |
| if isinstance(annotations[0], np.ndarray): | |
| annotations = np.array(annotations) | |
| annotations = torch.from_numpy(annotations) | |
| inner_mask = fast_show_mask_gpu( | |
| annotations, | |
| plt.gca(), | |
| random_color=mask_random_color, | |
| bbox=bbox, | |
| retinamask=use_retina, | |
| target_height=original_h, | |
| target_width=original_w, | |
| ) | |
| if isinstance(annotations, torch.Tensor): | |
| annotations = annotations.cpu().numpy() | |
| if withContours: | |
| contour_all = [] | |
| temp = np.zeros((original_h, original_w, 1)) | |
| for i, mask in enumerate(annotations): | |
| if type(mask) == dict: | |
| mask = mask["segmentation"] | |
| annotation = mask.astype(np.uint8) | |
| if use_retina == False: | |
| annotation = cv2.resize( | |
| annotation, | |
| (original_w, original_h), | |
| interpolation=cv2.INTER_NEAREST, | |
| ) | |
| contours, _ = cv2.findContours( | |
| annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE | |
| ) | |
| for contour in contours: | |
| contour_all.append(contour) | |
| cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) | |
| color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) | |
| contour_mask = temp / 255 * color.reshape(1, 1, -1) | |
| image = image.convert("RGBA") | |
| overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA") | |
| image.paste(overlay_inner, (0, 0), overlay_inner) | |
| if withContours: | |
| overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA") | |
| image.paste(overlay_contour, (0, 0), overlay_contour) | |
| return image | |
| # CPU post process | |
| def fast_show_mask( | |
| annotation, | |
| ax, | |
| random_color=False, | |
| bbox=None, | |
| retinamask=True, | |
| target_height=960, | |
| target_width=960, | |
| ): | |
| mask_sum = annotation.shape[0] | |
| height = annotation.shape[1] | |
| weight = annotation.shape[2] | |
| # 将annotation 按照面积 排序 | |
| areas = np.sum(annotation, axis=(1, 2)) | |
| sorted_indices = np.argsort(areas)[::1] | |
| annotation = annotation[sorted_indices] | |
| index = (annotation != 0).argmax(axis=0) | |
| if random_color == True: | |
| color = np.random.random((mask_sum, 1, 1, 3)) | |
| else: | |
| color = np.ones((mask_sum, 1, 1, 3)) * np.array( | |
| [30 / 255, 144 / 255, 255 / 255] | |
| ) | |
| transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6 | |
| visual = np.concatenate([color, transparency], axis=-1) | |
| mask_image = np.expand_dims(annotation, -1) * visual | |
| mask = np.zeros((height, weight, 4)) | |
| h_indices, w_indices = np.meshgrid( | |
| np.arange(height), np.arange(weight), indexing="ij" | |
| ) | |
| indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
| mask[h_indices, w_indices, :] = mask_image[indices] | |
| if bbox is not None: | |
| x1, y1, x2, y2 = bbox | |
| ax.add_patch( | |
| plt.Rectangle( | |
| (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 | |
| ) | |
| ) | |
| if retinamask == False: | |
| mask = cv2.resize( | |
| mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST | |
| ) | |
| return mask | |
| def fast_show_mask_gpu( | |
| annotation, | |
| ax, | |
| random_color=False, | |
| bbox=None, | |
| retinamask=True, | |
| target_height=960, | |
| target_width=960, | |
| ): | |
| device = annotation.device | |
| mask_sum = annotation.shape[0] | |
| height = annotation.shape[1] | |
| weight = annotation.shape[2] | |
| areas = torch.sum(annotation, dim=(1, 2)) | |
| sorted_indices = torch.argsort(areas, descending=False) | |
| annotation = annotation[sorted_indices] | |
| # 找每个位置第一个非零值下标 | |
| index = (annotation != 0).to(torch.long).argmax(dim=0) | |
| if random_color == True: | |
| color = torch.rand((mask_sum, 1, 1, 3)).to(device) | |
| else: | |
| color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor( | |
| [30 / 255, 144 / 255, 255 / 255] | |
| ).to(device) | |
| transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6 | |
| visual = torch.cat([color, transparency], dim=-1) | |
| mask_image = torch.unsqueeze(annotation, -1) * visual | |
| # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 | |
| mask = torch.zeros((height, weight, 4)).to(device) | |
| h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) | |
| indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
| # 使用向量化索引更新show的值 | |
| mask[h_indices, w_indices, :] = mask_image[indices] | |
| mask_cpu = mask.cpu().numpy() | |
| if bbox is not None: | |
| x1, y1, x2, y2 = bbox | |
| ax.add_patch( | |
| plt.Rectangle( | |
| (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 | |
| ) | |
| ) | |
| if retinamask == False: | |
| mask_cpu = cv2.resize( | |
| mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST | |
| ) | |
| return mask_cpu | |