Spaces:
Runtime error
Runtime error
Delete models
Browse files- models/all-MiniLM-L6-v2/1_Pooling/config.json +0 -10
- models/all-MiniLM-L6-v2/README.md +0 -173
- models/all-MiniLM-L6-v2/config.json +0 -26
- models/all-MiniLM-L6-v2/config_sentence_transformers.json +0 -10
- models/all-MiniLM-L6-v2/model.safetensors +0 -3
- models/all-MiniLM-L6-v2/modules.json +0 -20
- models/all-MiniLM-L6-v2/sentence_bert_config.json +0 -4
- models/all-MiniLM-L6-v2/special_tokens_map.json +0 -37
- models/all-MiniLM-L6-v2/tokenizer.json +0 -0
- models/all-MiniLM-L6-v2/tokenizer_config.json +0 -65
- models/all-MiniLM-L6-v2/vocab.txt +0 -0
models/all-MiniLM-L6-v2/1_Pooling/config.json
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"word_embedding_dimension": 384,
|
| 3 |
-
"pooling_mode_cls_token": false,
|
| 4 |
-
"pooling_mode_mean_tokens": true,
|
| 5 |
-
"pooling_mode_max_tokens": false,
|
| 6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
-
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
-
"pooling_mode_lasttoken": false,
|
| 9 |
-
"include_prompt": true
|
| 10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/README.md
DELETED
|
@@ -1,173 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
language: en
|
| 3 |
-
license: apache-2.0
|
| 4 |
-
library_name: sentence-transformers
|
| 5 |
-
tags:
|
| 6 |
-
- sentence-transformers
|
| 7 |
-
- feature-extraction
|
| 8 |
-
- sentence-similarity
|
| 9 |
-
- transformers
|
| 10 |
-
datasets:
|
| 11 |
-
- s2orc
|
| 12 |
-
- flax-sentence-embeddings/stackexchange_xml
|
| 13 |
-
- ms_marco
|
| 14 |
-
- gooaq
|
| 15 |
-
- yahoo_answers_topics
|
| 16 |
-
- code_search_net
|
| 17 |
-
- search_qa
|
| 18 |
-
- eli5
|
| 19 |
-
- snli
|
| 20 |
-
- multi_nli
|
| 21 |
-
- wikihow
|
| 22 |
-
- natural_questions
|
| 23 |
-
- trivia_qa
|
| 24 |
-
- embedding-data/sentence-compression
|
| 25 |
-
- embedding-data/flickr30k-captions
|
| 26 |
-
- embedding-data/altlex
|
| 27 |
-
- embedding-data/simple-wiki
|
| 28 |
-
- embedding-data/QQP
|
| 29 |
-
- embedding-data/SPECTER
|
| 30 |
-
- embedding-data/PAQ_pairs
|
| 31 |
-
- embedding-data/WikiAnswers
|
| 32 |
-
pipeline_tag: sentence-similarity
|
| 33 |
-
---
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# all-MiniLM-L6-v2
|
| 37 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 38 |
-
|
| 39 |
-
## Usage (Sentence-Transformers)
|
| 40 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 41 |
-
|
| 42 |
-
```
|
| 43 |
-
pip install -U sentence-transformers
|
| 44 |
-
```
|
| 45 |
-
|
| 46 |
-
Then you can use the model like this:
|
| 47 |
-
```python
|
| 48 |
-
from sentence_transformers import SentenceTransformer
|
| 49 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 50 |
-
|
| 51 |
-
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 52 |
-
embeddings = model.encode(sentences)
|
| 53 |
-
print(embeddings)
|
| 54 |
-
```
|
| 55 |
-
|
| 56 |
-
## Usage (HuggingFace Transformers)
|
| 57 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 58 |
-
|
| 59 |
-
```python
|
| 60 |
-
from transformers import AutoTokenizer, AutoModel
|
| 61 |
-
import torch
|
| 62 |
-
import torch.nn.functional as F
|
| 63 |
-
|
| 64 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
| 65 |
-
def mean_pooling(model_output, attention_mask):
|
| 66 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 67 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 68 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Sentences we want sentence embeddings for
|
| 72 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 73 |
-
|
| 74 |
-
# Load model from HuggingFace Hub
|
| 75 |
-
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 76 |
-
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 77 |
-
|
| 78 |
-
# Tokenize sentences
|
| 79 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 80 |
-
|
| 81 |
-
# Compute token embeddings
|
| 82 |
-
with torch.no_grad():
|
| 83 |
-
model_output = model(**encoded_input)
|
| 84 |
-
|
| 85 |
-
# Perform pooling
|
| 86 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 87 |
-
|
| 88 |
-
# Normalize embeddings
|
| 89 |
-
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
| 90 |
-
|
| 91 |
-
print("Sentence embeddings:")
|
| 92 |
-
print(sentence_embeddings)
|
| 93 |
-
```
|
| 94 |
-
|
| 95 |
-
------
|
| 96 |
-
|
| 97 |
-
## Background
|
| 98 |
-
|
| 99 |
-
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
| 100 |
-
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
|
| 101 |
-
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
| 102 |
-
|
| 103 |
-
We developed this model during the
|
| 104 |
-
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
|
| 105 |
-
organized by Hugging Face. We developed this model as part of the project:
|
| 106 |
-
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
|
| 107 |
-
|
| 108 |
-
## Intended uses
|
| 109 |
-
|
| 110 |
-
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
|
| 111 |
-
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
| 112 |
-
|
| 113 |
-
By default, input text longer than 256 word pieces is truncated.
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
## Training procedure
|
| 117 |
-
|
| 118 |
-
### Pre-training
|
| 119 |
-
|
| 120 |
-
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
|
| 121 |
-
|
| 122 |
-
### Fine-tuning
|
| 123 |
-
|
| 124 |
-
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
|
| 125 |
-
We then apply the cross entropy loss by comparing with true pairs.
|
| 126 |
-
|
| 127 |
-
#### Hyper parameters
|
| 128 |
-
|
| 129 |
-
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
|
| 130 |
-
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
| 131 |
-
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
| 132 |
-
|
| 133 |
-
#### Training data
|
| 134 |
-
|
| 135 |
-
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
|
| 136 |
-
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
| Dataset | Paper | Number of training tuples |
|
| 140 |
-
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
|
| 141 |
-
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
| 142 |
-
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
| 143 |
-
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
| 144 |
-
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
| 145 |
-
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
| 146 |
-
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
| 147 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
| 148 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
|
| 149 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
|
| 150 |
-
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
| 151 |
-
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
| 152 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
| 153 |
-
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
| 154 |
-
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
| 155 |
-
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
| 156 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
| 157 |
-
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
| 158 |
-
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
| 159 |
-
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
| 160 |
-
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
| 161 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
| 162 |
-
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
| 163 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
| 164 |
-
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
| 165 |
-
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
| 166 |
-
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
| 167 |
-
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
| 168 |
-
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
| 169 |
-
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
| 170 |
-
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
| 171 |
-
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
| 172 |
-
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
| 173 |
-
| **Total** | | **1,170,060,424** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/config.json
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
| 3 |
-
"architectures": [
|
| 4 |
-
"BertModel"
|
| 5 |
-
],
|
| 6 |
-
"attention_probs_dropout_prob": 0.1,
|
| 7 |
-
"classifier_dropout": null,
|
| 8 |
-
"gradient_checkpointing": false,
|
| 9 |
-
"hidden_act": "gelu",
|
| 10 |
-
"hidden_dropout_prob": 0.1,
|
| 11 |
-
"hidden_size": 384,
|
| 12 |
-
"initializer_range": 0.02,
|
| 13 |
-
"intermediate_size": 1536,
|
| 14 |
-
"layer_norm_eps": 1e-12,
|
| 15 |
-
"max_position_embeddings": 512,
|
| 16 |
-
"model_type": "bert",
|
| 17 |
-
"num_attention_heads": 12,
|
| 18 |
-
"num_hidden_layers": 6,
|
| 19 |
-
"pad_token_id": 0,
|
| 20 |
-
"position_embedding_type": "absolute",
|
| 21 |
-
"torch_dtype": "float32",
|
| 22 |
-
"transformers_version": "4.48.3",
|
| 23 |
-
"type_vocab_size": 2,
|
| 24 |
-
"use_cache": true,
|
| 25 |
-
"vocab_size": 30522
|
| 26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/config_sentence_transformers.json
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"__version__": {
|
| 3 |
-
"sentence_transformers": "3.4.1",
|
| 4 |
-
"transformers": "4.48.3",
|
| 5 |
-
"pytorch": "2.5.1+cu124"
|
| 6 |
-
},
|
| 7 |
-
"prompts": {},
|
| 8 |
-
"default_prompt_name": null,
|
| 9 |
-
"similarity_fn_name": "cosine"
|
| 10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
|
| 3 |
-
size 90864192
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/modules.json
DELETED
|
@@ -1,20 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"idx": 0,
|
| 4 |
-
"name": "0",
|
| 5 |
-
"path": "",
|
| 6 |
-
"type": "sentence_transformers.models.Transformer"
|
| 7 |
-
},
|
| 8 |
-
{
|
| 9 |
-
"idx": 1,
|
| 10 |
-
"name": "1",
|
| 11 |
-
"path": "1_Pooling",
|
| 12 |
-
"type": "sentence_transformers.models.Pooling"
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"idx": 2,
|
| 16 |
-
"name": "2",
|
| 17 |
-
"path": "2_Normalize",
|
| 18 |
-
"type": "sentence_transformers.models.Normalize"
|
| 19 |
-
}
|
| 20 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/sentence_bert_config.json
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"max_seq_length": 256,
|
| 3 |
-
"do_lower_case": false
|
| 4 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/special_tokens_map.json
DELETED
|
@@ -1,37 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cls_token": {
|
| 3 |
-
"content": "[CLS]",
|
| 4 |
-
"lstrip": false,
|
| 5 |
-
"normalized": false,
|
| 6 |
-
"rstrip": false,
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
-
"mask_token": {
|
| 10 |
-
"content": "[MASK]",
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": false,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"pad_token": {
|
| 17 |
-
"content": "[PAD]",
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
-
"sep_token": {
|
| 24 |
-
"content": "[SEP]",
|
| 25 |
-
"lstrip": false,
|
| 26 |
-
"normalized": false,
|
| 27 |
-
"rstrip": false,
|
| 28 |
-
"single_word": false
|
| 29 |
-
},
|
| 30 |
-
"unk_token": {
|
| 31 |
-
"content": "[UNK]",
|
| 32 |
-
"lstrip": false,
|
| 33 |
-
"normalized": false,
|
| 34 |
-
"rstrip": false,
|
| 35 |
-
"single_word": false
|
| 36 |
-
}
|
| 37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/tokenizer.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/all-MiniLM-L6-v2/tokenizer_config.json
DELETED
|
@@ -1,65 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"added_tokens_decoder": {
|
| 3 |
-
"0": {
|
| 4 |
-
"content": "[PAD]",
|
| 5 |
-
"lstrip": false,
|
| 6 |
-
"normalized": false,
|
| 7 |
-
"rstrip": false,
|
| 8 |
-
"single_word": false,
|
| 9 |
-
"special": true
|
| 10 |
-
},
|
| 11 |
-
"100": {
|
| 12 |
-
"content": "[UNK]",
|
| 13 |
-
"lstrip": false,
|
| 14 |
-
"normalized": false,
|
| 15 |
-
"rstrip": false,
|
| 16 |
-
"single_word": false,
|
| 17 |
-
"special": true
|
| 18 |
-
},
|
| 19 |
-
"101": {
|
| 20 |
-
"content": "[CLS]",
|
| 21 |
-
"lstrip": false,
|
| 22 |
-
"normalized": false,
|
| 23 |
-
"rstrip": false,
|
| 24 |
-
"single_word": false,
|
| 25 |
-
"special": true
|
| 26 |
-
},
|
| 27 |
-
"102": {
|
| 28 |
-
"content": "[SEP]",
|
| 29 |
-
"lstrip": false,
|
| 30 |
-
"normalized": false,
|
| 31 |
-
"rstrip": false,
|
| 32 |
-
"single_word": false,
|
| 33 |
-
"special": true
|
| 34 |
-
},
|
| 35 |
-
"103": {
|
| 36 |
-
"content": "[MASK]",
|
| 37 |
-
"lstrip": false,
|
| 38 |
-
"normalized": false,
|
| 39 |
-
"rstrip": false,
|
| 40 |
-
"single_word": false,
|
| 41 |
-
"special": true
|
| 42 |
-
}
|
| 43 |
-
},
|
| 44 |
-
"clean_up_tokenization_spaces": false,
|
| 45 |
-
"cls_token": "[CLS]",
|
| 46 |
-
"do_basic_tokenize": true,
|
| 47 |
-
"do_lower_case": true,
|
| 48 |
-
"extra_special_tokens": {},
|
| 49 |
-
"mask_token": "[MASK]",
|
| 50 |
-
"max_length": 128,
|
| 51 |
-
"model_max_length": 256,
|
| 52 |
-
"never_split": null,
|
| 53 |
-
"pad_to_multiple_of": null,
|
| 54 |
-
"pad_token": "[PAD]",
|
| 55 |
-
"pad_token_type_id": 0,
|
| 56 |
-
"padding_side": "right",
|
| 57 |
-
"sep_token": "[SEP]",
|
| 58 |
-
"stride": 0,
|
| 59 |
-
"strip_accents": null,
|
| 60 |
-
"tokenize_chinese_chars": true,
|
| 61 |
-
"tokenizer_class": "BertTokenizer",
|
| 62 |
-
"truncation_side": "right",
|
| 63 |
-
"truncation_strategy": "longest_first",
|
| 64 |
-
"unk_token": "[UNK]"
|
| 65 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models/all-MiniLM-L6-v2/vocab.txt
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|