Upload 5 files
Browse files- Dockerfile +24 -0
- app.py +212 -0
- efficientnet_glam_best.pt +3 -0
- glam_efficient_model.py +103 -0
- requirements.txt +10 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
# 2️⃣ Set working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# 3️⃣ Install required system dependencies (fixes libGL and libgthread errors)
|
| 7 |
+
RUN apt-get update && \
|
| 8 |
+
apt-get install -y libgl1-mesa-glx libglib2.0-0 && \
|
| 9 |
+
rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
# 4️⃣ Copy requirements
|
| 12 |
+
COPY requirements.txt .
|
| 13 |
+
|
| 14 |
+
# 5️⃣ Install Python dependencies
|
| 15 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 16 |
+
|
| 17 |
+
# 6️⃣ Copy all files from the root of your project
|
| 18 |
+
COPY . .
|
| 19 |
+
|
| 20 |
+
# 7️⃣ Expose the port
|
| 21 |
+
EXPOSE 7860
|
| 22 |
+
|
| 23 |
+
# 8️⃣ Command to run the app
|
| 24 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, send_file
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torchvision import transforms
|
| 6 |
+
import os
|
| 7 |
+
import numpy as np
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
import sqlite3
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import cv2
|
| 12 |
+
|
| 13 |
+
# ✅ New Grad-CAM++ imports
|
| 14 |
+
from pytorch_grad_cam import GradCAMPlusPlus
|
| 15 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
| 16 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 17 |
+
|
| 18 |
+
# ✅ Import Hugging Face-style GLAM EfficientNet model
|
| 19 |
+
from glam_efficientnet_model import GLAMEfficientNetForClassification, GLAMEfficientNetConfig
|
| 20 |
+
|
| 21 |
+
app = Flask(__name__)
|
| 22 |
+
|
| 23 |
+
# ✅ Directory and database path
|
| 24 |
+
OUTPUT_DIR = '/tmp/results'
|
| 25 |
+
if not os.path.exists(OUTPUT_DIR):
|
| 26 |
+
os.makedirs(OUTPUT_DIR)
|
| 27 |
+
|
| 28 |
+
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def init_db():
|
| 32 |
+
"""Initialize SQLite database for storing results."""
|
| 33 |
+
conn = sqlite3.connect(DB_PATH)
|
| 34 |
+
cursor = conn.cursor()
|
| 35 |
+
cursor.execute("""
|
| 36 |
+
CREATE TABLE IF NOT EXISTS results (
|
| 37 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 38 |
+
image_filename TEXT,
|
| 39 |
+
prediction TEXT,
|
| 40 |
+
confidence REAL,
|
| 41 |
+
gradcam_filename TEXT,
|
| 42 |
+
gradcam_gray_filename TEXT,
|
| 43 |
+
timestamp TEXT
|
| 44 |
+
)
|
| 45 |
+
""")
|
| 46 |
+
conn.commit()
|
| 47 |
+
conn.close()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
init_db()
|
| 51 |
+
|
| 52 |
+
# ✅ Load GLAM EfficientNet Model
|
| 53 |
+
config = GLAMEfficientNetConfig()
|
| 54 |
+
model = GLAMEfficientNetForClassification(config)
|
| 55 |
+
model.load_state_dict(torch.load('efficientnet_glam_best.pt', map_location='cpu'))
|
| 56 |
+
model.eval()
|
| 57 |
+
|
| 58 |
+
# ✅ Class Names
|
| 59 |
+
CLASS_NAMES = ["Advanced", "Early", "Normal"]
|
| 60 |
+
|
| 61 |
+
# ✅ Transformation for input images
|
| 62 |
+
transform = transforms.Compose([
|
| 63 |
+
transforms.Resize(256),
|
| 64 |
+
transforms.CenterCrop(224),
|
| 65 |
+
transforms.ToTensor(),
|
| 66 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 67 |
+
std=[0.229, 0.224, 0.225]),
|
| 68 |
+
])
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@app.route('/')
|
| 72 |
+
def home():
|
| 73 |
+
"""Check that the API is working."""
|
| 74 |
+
return "Glaucoma Detection Flask API (EfficientNet + GLAM) is running!"
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@app.route("/test_file")
|
| 78 |
+
def test_file():
|
| 79 |
+
"""Check if the .pt model file is present and readable."""
|
| 80 |
+
filepath = "efficientnet_glam_best.pt"
|
| 81 |
+
if os.path.exists(filepath):
|
| 82 |
+
return f"✅ Model file found at: {filepath}"
|
| 83 |
+
else:
|
| 84 |
+
return "❌ Model file NOT found."
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@app.route('/predict', methods=['POST'])
|
| 88 |
+
def predict():
|
| 89 |
+
"""Perform prediction and save results (including Grad-CAM++) to the database."""
|
| 90 |
+
if 'file' not in request.files:
|
| 91 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
| 92 |
+
|
| 93 |
+
uploaded_file = request.files['file']
|
| 94 |
+
if uploaded_file.filename == '':
|
| 95 |
+
return jsonify({'error': 'No file selected'}), 400
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
# ✅ Save the uploaded image
|
| 99 |
+
timestamp = int(datetime.now().timestamp())
|
| 100 |
+
uploaded_filename = f"uploaded_{timestamp}.png"
|
| 101 |
+
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
|
| 102 |
+
uploaded_file.save(uploaded_file_path)
|
| 103 |
+
|
| 104 |
+
# ✅ Perform prediction
|
| 105 |
+
img = Image.open(uploaded_file_path).convert('RGB')
|
| 106 |
+
input_tensor = transform(img).unsqueeze(0)
|
| 107 |
+
|
| 108 |
+
# ✅ Get prediction
|
| 109 |
+
output = model(input_tensor) # Dict with "logits"
|
| 110 |
+
probabilities = F.softmax(output["logits"], dim=1).cpu().detach().numpy()[0]
|
| 111 |
+
class_index = np.argmax(probabilities)
|
| 112 |
+
result = CLASS_NAMES[class_index]
|
| 113 |
+
confidence = float(probabilities[class_index])
|
| 114 |
+
|
| 115 |
+
# ✅ Grad-CAM++ setup
|
| 116 |
+
# IMPORTANT: Choose the target layer from the GLAM EfficientNet model.
|
| 117 |
+
# For example, use the final convolutional block:
|
| 118 |
+
target_layer = model.features[-1]
|
| 119 |
+
cam_model = GradCAMPlusPlus(model=model, target_layers=[target_layer])
|
| 120 |
+
|
| 121 |
+
# ✅ Get Grad-CAM++ map
|
| 122 |
+
cam_output = cam_model(input_tensor=input_tensor, targets=[ClassifierOutputTarget(class_index)])[0]
|
| 123 |
+
|
| 124 |
+
# ✅ Create RGB overlay
|
| 125 |
+
original_img = np.asarray(img.resize((224, 224)), dtype=np.float32) / 255.0
|
| 126 |
+
overlay = show_cam_on_image(original_img, cam_output, use_rgb=True)
|
| 127 |
+
|
| 128 |
+
# ✅ Create grayscale version
|
| 129 |
+
cam_normalized = np.uint8(255 * cam_output)
|
| 130 |
+
|
| 131 |
+
# ✅ Save overlay
|
| 132 |
+
gradcam_filename = f"gradcam_{timestamp}.png"
|
| 133 |
+
gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
|
| 134 |
+
cv2.imwrite(gradcam_file_path, cv2.cvtColor(overlay, cv2.COLOR_RGB2BGR))
|
| 135 |
+
|
| 136 |
+
# ✅ Save grayscale
|
| 137 |
+
gray_filename = f"gradcam_gray_{timestamp}.png"
|
| 138 |
+
gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
|
| 139 |
+
cv2.imwrite(gray_file_path, cam_normalized)
|
| 140 |
+
|
| 141 |
+
# ✅ Save results to database
|
| 142 |
+
conn = sqlite3.connect(DB_PATH)
|
| 143 |
+
cursor = conn.cursor()
|
| 144 |
+
cursor.execute("""
|
| 145 |
+
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, gradcam_gray_filename, timestamp)
|
| 146 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
| 147 |
+
""", (uploaded_filename, result, confidence, gradcam_filename, gray_filename, datetime.now().isoformat()))
|
| 148 |
+
conn.commit()
|
| 149 |
+
conn.close()
|
| 150 |
+
|
| 151 |
+
# ✅ Return results
|
| 152 |
+
return jsonify({
|
| 153 |
+
'prediction': result,
|
| 154 |
+
'confidence': confidence,
|
| 155 |
+
'normal_probability': float(probabilities[0]),
|
| 156 |
+
'early_glaucoma_probability': float(probabilities[1]),
|
| 157 |
+
'advanced_glaucoma_probability': float(probabilities[2]),
|
| 158 |
+
'gradcam_image': gradcam_filename,
|
| 159 |
+
'gradcam_gray_image': gray_filename,
|
| 160 |
+
'image_filename': uploaded_filename
|
| 161 |
+
})
|
| 162 |
+
|
| 163 |
+
except Exception as e:
|
| 164 |
+
return jsonify({'error': str(e)}), 500
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
@app.route('/results', methods=['GET'])
|
| 168 |
+
def results():
|
| 169 |
+
"""List all results from the SQLite database."""
|
| 170 |
+
conn = sqlite3.connect(DB_PATH)
|
| 171 |
+
cursor = conn.cursor()
|
| 172 |
+
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
|
| 173 |
+
results_data = cursor.fetchall()
|
| 174 |
+
conn.close()
|
| 175 |
+
|
| 176 |
+
results_list = []
|
| 177 |
+
for record in results_data:
|
| 178 |
+
results_list.append({
|
| 179 |
+
'id': record[0],
|
| 180 |
+
'image_filename': record[1],
|
| 181 |
+
'prediction': record[2],
|
| 182 |
+
'confidence': record[3],
|
| 183 |
+
'gradcam_filename': record[4],
|
| 184 |
+
'gradcam_gray_filename': record[5],
|
| 185 |
+
'timestamp': record[6]
|
| 186 |
+
})
|
| 187 |
+
|
| 188 |
+
return jsonify(results_list)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
@app.route('/gradcam/<filename>')
|
| 192 |
+
def get_gradcam(filename):
|
| 193 |
+
"""Serve the Grad-CAM overlay image."""
|
| 194 |
+
filepath = os.path.join(OUTPUT_DIR, filename)
|
| 195 |
+
if os.path.exists(filepath):
|
| 196 |
+
return send_file(filepath, mimetype='image/png')
|
| 197 |
+
else:
|
| 198 |
+
return jsonify({'error': 'File not found'}), 404
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@app.route('/image/<filename>')
|
| 202 |
+
def get_image(filename):
|
| 203 |
+
"""Serve the original uploaded image."""
|
| 204 |
+
filepath = os.path.join(OUTPUT_DIR, filename)
|
| 205 |
+
if os.path.exists(filepath):
|
| 206 |
+
return send_file(filepath, mimetype='image/png')
|
| 207 |
+
else:
|
| 208 |
+
return jsonify({'error': 'File not found'}), 404
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
if __name__ == '__main__':
|
| 212 |
+
app.run(host='0.0.0.0', port=7860)
|
efficientnet_glam_best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bcdc2e2bc5aef943b6658e2e2e1fd62a856d860aef97e7f2bdc2ca3b03a8fe5b
|
| 3 |
+
size 45758832
|
glam_efficient_model.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 5 |
+
from transformers import EfficientNetModel
|
| 6 |
+
from typing import Optional, Union
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# --------------------------------------------------
|
| 10 |
+
# Import your GLAM, SwinWindowAttention blocks here
|
| 11 |
+
# --------------------------------------------------
|
| 12 |
+
# from .glam_module import GLAM
|
| 13 |
+
# from .swin_module import SwinWindowAttention
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class GLAMEfficientNetConfig(PretrainedConfig):
|
| 17 |
+
"""Hugging Face-style configuration for GLAM EfficientNet."""
|
| 18 |
+
model_type = "glam_efficientnet"
|
| 19 |
+
|
| 20 |
+
def __init__(self,
|
| 21 |
+
num_classes: int = 3,
|
| 22 |
+
embed_dim: int = 512,
|
| 23 |
+
num_heads: int = 8,
|
| 24 |
+
window_size: int = 7,
|
| 25 |
+
reduction_ratio: int = 8,
|
| 26 |
+
dropout: float = 0.5,
|
| 27 |
+
**kwargs):
|
| 28 |
+
super().__init__(**kwargs)
|
| 29 |
+
self.num_classes = num_classes
|
| 30 |
+
self.embed_dim = embed_dim
|
| 31 |
+
self.num_heads = num_heads
|
| 32 |
+
self.window_size = window_size
|
| 33 |
+
self.reduction_ratio = reduction_ratio
|
| 34 |
+
self.dropout = dropout
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class GLAMEfficientNetForClassification(PreTrainedModel):
|
| 38 |
+
"""Hugging Face-style Model for EfficientNet + GLAM + Swin Architecture."""
|
| 39 |
+
|
| 40 |
+
config_class = GLAMEfficientNetConfig
|
| 41 |
+
|
| 42 |
+
def __init__(self, config: GLAMEfficientNetConfig):
|
| 43 |
+
super().__init__(config)
|
| 44 |
+
|
| 45 |
+
# 1) EfficientNet Backbone
|
| 46 |
+
self.features = EfficientNetModel.from_pretrained("google/efficientnet-b0").features
|
| 47 |
+
self.conv1x1 = nn.Conv2d(1280, config.embed_dim, kernel_size=1)
|
| 48 |
+
|
| 49 |
+
# 2) Swin Attention Block
|
| 50 |
+
self.swin_attn = SwinWindowAttention(
|
| 51 |
+
embed_dim=config.embed_dim,
|
| 52 |
+
window_size=config.window_size,
|
| 53 |
+
num_heads=config.num_heads,
|
| 54 |
+
dropout=config.dropout
|
| 55 |
+
)
|
| 56 |
+
self.pre_attn_norm = nn.LayerNorm(config.embed_dim)
|
| 57 |
+
self.post_attn_norm = nn.LayerNorm(config.embed_dim)
|
| 58 |
+
|
| 59 |
+
# 3) GLAM Block
|
| 60 |
+
self.glam = GLAM(in_channels=config.embed_dim, reduction_ratio=config.reduction_ratio)
|
| 61 |
+
|
| 62 |
+
# 4) Self-Adaptive Gating
|
| 63 |
+
self.gate_fc = nn.Linear(config.embed_dim, 1)
|
| 64 |
+
|
| 65 |
+
# Final classification
|
| 66 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 67 |
+
self.classifier = nn.Linear(config.embed_dim, config.num_classes)
|
| 68 |
+
|
| 69 |
+
def forward(self, pixel_values, labels=None, **kwargs):
|
| 70 |
+
# 1) Extract EfficientNet Features
|
| 71 |
+
feats = self.features(pixel_values).last_hidden_state
|
| 72 |
+
feats = self.conv1x1(feats)
|
| 73 |
+
|
| 74 |
+
B, C, H, W = feats.shape
|
| 75 |
+
|
| 76 |
+
# 2) Transformer Branch
|
| 77 |
+
x_perm = feats.permute(0, 2, 3, 1).contiguous()
|
| 78 |
+
x_norm = self.pre_attn_norm(x_perm).permute(0, 3, 1, 2).contiguous()
|
| 79 |
+
x_norm = self.dropout(x_norm)
|
| 80 |
+
|
| 81 |
+
T_out = self.swin_attn(x_norm)
|
| 82 |
+
|
| 83 |
+
T_out = self.post_attn_norm(T_out.permute(0, 2, 3, 1).contiguous())
|
| 84 |
+
T_out = T_out.permute(0, 3, 1, 2).contiguous()
|
| 85 |
+
|
| 86 |
+
# 3) GLAM Branch
|
| 87 |
+
G_out = self.glam(feats)
|
| 88 |
+
|
| 89 |
+
# 4) Self-Adaptive Gating
|
| 90 |
+
gap_feats = F.adaptive_avg_pool2d(feats, (1, 1)).view(B, C)
|
| 91 |
+
g = torch.sigmoid(self.gate_fc(gap_feats)).view(B, 1, 1, 1)
|
| 92 |
+
|
| 93 |
+
F_out = g * T_out + (1 - g) * G_out
|
| 94 |
+
|
| 95 |
+
# 5) Final Pooling + Classifier
|
| 96 |
+
pooled = F.adaptive_avg_pool2d(F_out, (1, 1)).view(B, -1)
|
| 97 |
+
logits = self.classifier(self.dropout(pooled))
|
| 98 |
+
|
| 99 |
+
loss = None
|
| 100 |
+
if labels is not None:
|
| 101 |
+
loss = F.cross_entropy(logits, labels)
|
| 102 |
+
|
| 103 |
+
return {"loss": loss, "logits": logits}
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
Pillow
|
| 5 |
+
numpy
|
| 6 |
+
opencv-python
|
| 7 |
+
|
| 8 |
+
firebase-admin
|
| 9 |
+
psycopg2-binary
|
| 10 |
+
grad-cam
|