Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from datetime import datetime
|
|
| 9 |
import sqlite3
|
| 10 |
import torch.nn as nn
|
| 11 |
import torchvision.models as models
|
|
|
|
| 12 |
|
| 13 |
app = Flask(__name__)
|
| 14 |
|
|
@@ -46,13 +47,11 @@ from densenet_withglam import get_model_with_attention
|
|
| 46 |
# β
Instantiate the model
|
| 47 |
model = get_model_with_attention('densenet169', num_classes=3) # Will have GLAM
|
| 48 |
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
|
| 49 |
-
# Load your trained weights
|
| 50 |
model.eval()
|
| 51 |
|
| 52 |
# β
Class Names
|
| 53 |
CLASS_NAMES = ["Advanced", "Early", "Normal"]
|
| 54 |
|
| 55 |
-
|
| 56 |
# β
Transformation for input images
|
| 57 |
transform = transforms.Compose([
|
| 58 |
transforms.Resize(256),
|
|
@@ -61,6 +60,46 @@ transform = transforms.Compose([
|
|
| 61 |
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 62 |
std=[0.229, 0.224, 0.225]),
|
| 63 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
@app.route('/')
|
| 65 |
def home():
|
| 66 |
"""Check that the API is working."""
|
|
@@ -75,9 +114,10 @@ def test_file():
|
|
| 75 |
else:
|
| 76 |
return "β Model file NOT found."
|
| 77 |
|
|
|
|
| 78 |
@app.route('/predict', methods=['POST'])
|
| 79 |
def predict():
|
| 80 |
-
"""Perform prediction
|
| 81 |
if 'file' not in request.files:
|
| 82 |
return jsonify({'error': 'No file uploaded'}), 400
|
| 83 |
|
|
@@ -96,22 +136,40 @@ def predict():
|
|
| 96 |
img = Image.open(uploaded_file_path).convert('RGB')
|
| 97 |
input_tensor = transform(img).unsqueeze(0)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
class_index = np.argmax(probabilities)
|
| 105 |
result = CLASS_NAMES[class_index]
|
| 106 |
confidence = float(probabilities[class_index])
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
# β
Save results to SQLite
|
| 109 |
conn = sqlite3.connect(DB_PATH)
|
| 110 |
cursor = conn.cursor()
|
| 111 |
cursor.execute("""
|
| 112 |
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
|
| 113 |
VALUES (?, ?, ?, ?, ?)
|
| 114 |
-
""", (uploaded_filename, result, confidence,
|
| 115 |
conn.commit()
|
| 116 |
conn.close()
|
| 117 |
|
|
@@ -121,13 +179,14 @@ def predict():
|
|
| 121 |
'normal_probability': float(probabilities[0]),
|
| 122 |
'early_glaucoma_probability': float(probabilities[1]),
|
| 123 |
'advanced_glaucoma_probability': float(probabilities[2]),
|
| 124 |
-
'gradcam_image':
|
| 125 |
'image_filename': uploaded_filename
|
| 126 |
})
|
| 127 |
|
| 128 |
except Exception as e:
|
| 129 |
return jsonify({'error': str(e)}), 500
|
| 130 |
|
|
|
|
| 131 |
@app.route('/results', methods=['GET'])
|
| 132 |
def results():
|
| 133 |
"""List all results from the SQLite database."""
|
|
@@ -150,15 +209,17 @@ def results():
|
|
| 150 |
|
| 151 |
return jsonify(results_list)
|
| 152 |
|
|
|
|
| 153 |
@app.route('/gradcam/<filename>')
|
| 154 |
def get_gradcam(filename):
|
| 155 |
-
"""Serve the Grad-CAM overlay image
|
| 156 |
filepath = os.path.join(OUTPUT_DIR, filename)
|
| 157 |
if os.path.exists(filepath):
|
| 158 |
return send_file(filepath, mimetype='image/png')
|
| 159 |
else:
|
| 160 |
return jsonify({'error': 'File not found'}), 404
|
| 161 |
|
|
|
|
| 162 |
@app.route('/image/<filename>')
|
| 163 |
def get_image(filename):
|
| 164 |
"""Serve the original uploaded image."""
|
|
@@ -168,5 +229,6 @@ def get_image(filename):
|
|
| 168 |
else:
|
| 169 |
return jsonify({'error': 'File not found'}), 404
|
| 170 |
|
|
|
|
| 171 |
if __name__ == '__main__':
|
| 172 |
app.run(host='0.0.0.0', port=7860)
|
|
|
|
| 9 |
import sqlite3
|
| 10 |
import torch.nn as nn
|
| 11 |
import torchvision.models as models
|
| 12 |
+
import cv2
|
| 13 |
|
| 14 |
app = Flask(__name__)
|
| 15 |
|
|
|
|
| 47 |
# β
Instantiate the model
|
| 48 |
model = get_model_with_attention('densenet169', num_classes=3) # Will have GLAM
|
| 49 |
model.load_state_dict(torch.load('densenet169_seed40_best.pt', map_location='cpu'))
|
|
|
|
| 50 |
model.eval()
|
| 51 |
|
| 52 |
# β
Class Names
|
| 53 |
CLASS_NAMES = ["Advanced", "Early", "Normal"]
|
| 54 |
|
|
|
|
| 55 |
# β
Transformation for input images
|
| 56 |
transform = transforms.Compose([
|
| 57 |
transforms.Resize(256),
|
|
|
|
| 60 |
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 61 |
std=[0.229, 0.224, 0.225]),
|
| 62 |
])
|
| 63 |
+
|
| 64 |
+
# =========================
|
| 65 |
+
# GRAD-CAM IMPLEMENTATION
|
| 66 |
+
# =========================
|
| 67 |
+
class GradCAM:
|
| 68 |
+
"""Grad-CAM for the target layer."""
|
| 69 |
+
def __init__(self, model, target_layer_name):
|
| 70 |
+
self.model = model
|
| 71 |
+
self.target_layer_name = target_layer_name
|
| 72 |
+
self.activations = None
|
| 73 |
+
self.gradients = None
|
| 74 |
+
self._register_hooks()
|
| 75 |
+
|
| 76 |
+
def _register_hooks(self):
|
| 77 |
+
"""Register forward and backward hooks."""
|
| 78 |
+
for name, module in self.model.named_modules():
|
| 79 |
+
if name == self.target_layer_name:
|
| 80 |
+
module.register_forward_hook(self._forward_hook)
|
| 81 |
+
module.register_full_backward_hook(self._backward_hook)
|
| 82 |
+
|
| 83 |
+
def _forward_hook(self, module, input, output):
|
| 84 |
+
"""Save activations."""
|
| 85 |
+
self.activations = output
|
| 86 |
+
|
| 87 |
+
def _backward_hook(self, module, grad_in, grad_out):
|
| 88 |
+
"""Save gradients."""
|
| 89 |
+
self.gradients = grad_out[0]
|
| 90 |
+
|
| 91 |
+
def generate(self, class_index):
|
| 92 |
+
"""Generate the Grad-CAM."""
|
| 93 |
+
if self.activations is None or self.gradients is None:
|
| 94 |
+
raise ValueError("Must run forward and backward passes first.")
|
| 95 |
+
weights = self.gradients.mean(dim=(2, 3), keepdim=True)
|
| 96 |
+
cam = (weights * self.activations).sum(dim=1, keepdim=True)
|
| 97 |
+
cam = F.relu(cam)
|
| 98 |
+
cam = cam.squeeze().cpu().numpy()
|
| 99 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min() + 1e-8)
|
| 100 |
+
return cam
|
| 101 |
+
|
| 102 |
+
|
| 103 |
@app.route('/')
|
| 104 |
def home():
|
| 105 |
"""Check that the API is working."""
|
|
|
|
| 114 |
else:
|
| 115 |
return "β Model file NOT found."
|
| 116 |
|
| 117 |
+
|
| 118 |
@app.route('/predict', methods=['POST'])
|
| 119 |
def predict():
|
| 120 |
+
"""Perform prediction and save results (including Grad-CAM) to the database."""
|
| 121 |
if 'file' not in request.files:
|
| 122 |
return jsonify({'error': 'No file uploaded'}), 400
|
| 123 |
|
|
|
|
| 136 |
img = Image.open(uploaded_file_path).convert('RGB')
|
| 137 |
input_tensor = transform(img).unsqueeze(0)
|
| 138 |
|
| 139 |
+
# Grad-CAM setup
|
| 140 |
+
target_layer_name = "features.2.global_spatial_conv"
|
| 141 |
+
gradcam = GradCAM(model, target_layer_name)
|
| 142 |
+
|
| 143 |
+
# Forward pass
|
| 144 |
+
input_tensor.requires_grad = True
|
| 145 |
+
output = model(input_tensor)
|
| 146 |
|
| 147 |
+
probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
|
| 148 |
class_index = np.argmax(probabilities)
|
| 149 |
result = CLASS_NAMES[class_index]
|
| 150 |
confidence = float(probabilities[class_index])
|
| 151 |
|
| 152 |
+
# Backward pass for Grad-CAM
|
| 153 |
+
model.zero_grad()
|
| 154 |
+
output[0, class_index].backward()
|
| 155 |
+
cam = gradcam.generate(class_index)
|
| 156 |
+
|
| 157 |
+
# β
Create overlay
|
| 158 |
+
original_img = np.asarray(img.resize((224, 224)))
|
| 159 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET)
|
| 160 |
+
overlay = cv2.addWeighted(original_img, 0.6, heatmap, 0.4, 0)
|
| 161 |
+
|
| 162 |
+
gradcam_filename = f"gradcam_{timestamp}.png"
|
| 163 |
+
gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
|
| 164 |
+
cv2.imwrite(gradcam_file_path, overlay)
|
| 165 |
+
|
| 166 |
# β
Save results to SQLite
|
| 167 |
conn = sqlite3.connect(DB_PATH)
|
| 168 |
cursor = conn.cursor()
|
| 169 |
cursor.execute("""
|
| 170 |
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
|
| 171 |
VALUES (?, ?, ?, ?, ?)
|
| 172 |
+
""", (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
|
| 173 |
conn.commit()
|
| 174 |
conn.close()
|
| 175 |
|
|
|
|
| 179 |
'normal_probability': float(probabilities[0]),
|
| 180 |
'early_glaucoma_probability': float(probabilities[1]),
|
| 181 |
'advanced_glaucoma_probability': float(probabilities[2]),
|
| 182 |
+
'gradcam_image': gradcam_filename,
|
| 183 |
'image_filename': uploaded_filename
|
| 184 |
})
|
| 185 |
|
| 186 |
except Exception as e:
|
| 187 |
return jsonify({'error': str(e)}), 500
|
| 188 |
|
| 189 |
+
|
| 190 |
@app.route('/results', methods=['GET'])
|
| 191 |
def results():
|
| 192 |
"""List all results from the SQLite database."""
|
|
|
|
| 209 |
|
| 210 |
return jsonify(results_list)
|
| 211 |
|
| 212 |
+
|
| 213 |
@app.route('/gradcam/<filename>')
|
| 214 |
def get_gradcam(filename):
|
| 215 |
+
"""Serve the Grad-CAM overlay image."""
|
| 216 |
filepath = os.path.join(OUTPUT_DIR, filename)
|
| 217 |
if os.path.exists(filepath):
|
| 218 |
return send_file(filepath, mimetype='image/png')
|
| 219 |
else:
|
| 220 |
return jsonify({'error': 'File not found'}), 404
|
| 221 |
|
| 222 |
+
|
| 223 |
@app.route('/image/<filename>')
|
| 224 |
def get_image(filename):
|
| 225 |
"""Serve the original uploaded image."""
|
|
|
|
| 229 |
else:
|
| 230 |
return jsonify({'error': 'File not found'}), 404
|
| 231 |
|
| 232 |
+
|
| 233 |
if __name__ == '__main__':
|
| 234 |
app.run(host='0.0.0.0', port=7860)
|