Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,19 +5,21 @@ import numpy as np
|
|
| 5 |
import os
|
| 6 |
import cv2
|
| 7 |
import tensorflow as tf
|
| 8 |
-
import firebase_admin
|
| 9 |
-
from firebase_admin import credentials, db
|
| 10 |
from datetime import datetime
|
|
|
|
|
|
|
| 11 |
|
| 12 |
app = Flask(__name__)
|
| 13 |
|
| 14 |
-
# β
1.
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
# β
2. Load
|
| 21 |
model = load_model('mobilenet_glaucoma_model.h5', compile=False)
|
| 22 |
|
| 23 |
# β
3. Preprocess Image
|
|
@@ -39,8 +41,8 @@ def make_gradcam(img_array, model, last_conv_layer_name='Conv_1_bn'):
|
|
| 39 |
grads = tape.gradient(loss, conv_outputs)
|
| 40 |
|
| 41 |
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 42 |
-
conv_outputs = conv_outputs[0].numpy()
|
| 43 |
-
pooled_grads = pooled_grads.numpy()
|
| 44 |
|
| 45 |
for i in range(conv_outputs.shape[-1]):
|
| 46 |
conv_outputs[..., i] *= pooled_grads[i]
|
|
@@ -75,16 +77,16 @@ def home():
|
|
| 75 |
|
| 76 |
@app.route("/test_file")
|
| 77 |
def test_file():
|
| 78 |
-
"""Check if the
|
| 79 |
-
filepath = "
|
| 80 |
if os.path.exists(filepath):
|
| 81 |
-
return f"β
|
| 82 |
else:
|
| 83 |
-
return "β
|
| 84 |
|
| 85 |
@app.route('/predict', methods=['POST'])
|
| 86 |
def predict():
|
| 87 |
-
"""Perform prediction and save results to
|
| 88 |
if 'file' not in request.files:
|
| 89 |
return jsonify({'error': 'No file uploaded'}), 400
|
| 90 |
|
|
@@ -107,14 +109,16 @@ def predict():
|
|
| 107 |
gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
|
| 108 |
save_gradcam_image(img, heatmap, filename=gradcam_filename)
|
| 109 |
|
| 110 |
-
# Save to
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
|
| 119 |
return jsonify({
|
| 120 |
'prediction': result,
|
|
@@ -129,11 +133,26 @@ def predict():
|
|
| 129 |
|
| 130 |
@app.route('/results', methods=['GET'])
|
| 131 |
def results():
|
| 132 |
-
"""List all results from the
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
@app.route('/gradcam/<filename>')
|
| 139 |
def get_gradcam(filename):
|
|
|
|
| 5 |
import os
|
| 6 |
import cv2
|
| 7 |
import tensorflow as tf
|
|
|
|
|
|
|
| 8 |
from datetime import datetime
|
| 9 |
+
import psycopg2
|
| 10 |
+
from psycopg2.extras import DictCursor
|
| 11 |
|
| 12 |
app = Flask(__name__)
|
| 13 |
|
| 14 |
+
# β
1. Connect to PostgreSQL (Supabase)
|
| 15 |
+
POSTGRES_URL = "postgresql://postgres.otihqjwfqjwccsipzroy:Dhruvagr%40123@aws-0-us-east-2.pooler.supabase.com:5432/postgres"
|
| 16 |
|
| 17 |
+
def get_db_connection():
|
| 18 |
+
"""Get a new database connection."""
|
| 19 |
+
conn = psycopg2.connect(POSTGRES_URL)
|
| 20 |
+
return conn
|
| 21 |
|
| 22 |
+
# β
2. Load Model
|
| 23 |
model = load_model('mobilenet_glaucoma_model.h5', compile=False)
|
| 24 |
|
| 25 |
# β
3. Preprocess Image
|
|
|
|
| 41 |
grads = tape.gradient(loss, conv_outputs)
|
| 42 |
|
| 43 |
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
| 44 |
+
conv_outputs = conv_outputs[0].numpy()
|
| 45 |
+
pooled_grads = pooled_grads.numpy()
|
| 46 |
|
| 47 |
for i in range(conv_outputs.shape[-1]):
|
| 48 |
conv_outputs[..., i] *= pooled_grads[i]
|
|
|
|
| 77 |
|
| 78 |
@app.route("/test_file")
|
| 79 |
def test_file():
|
| 80 |
+
"""Check if the model file is present and readable."""
|
| 81 |
+
filepath = "mobilenet_glaucoma_model.h5"
|
| 82 |
if os.path.exists(filepath):
|
| 83 |
+
return f"β
Model file found at: {filepath}"
|
| 84 |
else:
|
| 85 |
+
return "β Model file NOT found."
|
| 86 |
|
| 87 |
@app.route('/predict', methods=['POST'])
|
| 88 |
def predict():
|
| 89 |
+
"""Perform prediction and save results to PostgreSQL (Supabase)."""
|
| 90 |
if 'file' not in request.files:
|
| 91 |
return jsonify({'error': 'No file uploaded'}), 400
|
| 92 |
|
|
|
|
| 109 |
gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
|
| 110 |
save_gradcam_image(img, heatmap, filename=gradcam_filename)
|
| 111 |
|
| 112 |
+
# Save results to PostgreSQL
|
| 113 |
+
conn = get_db_connection()
|
| 114 |
+
cursor = conn.cursor()
|
| 115 |
+
cursor.execute("""
|
| 116 |
+
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
|
| 117 |
+
VALUES (%s, %s, %s, %s, %s)
|
| 118 |
+
""", (file.filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
|
| 119 |
+
conn.commit()
|
| 120 |
+
cursor.close()
|
| 121 |
+
conn.close()
|
| 122 |
|
| 123 |
return jsonify({
|
| 124 |
'prediction': result,
|
|
|
|
| 133 |
|
| 134 |
@app.route('/results', methods=['GET'])
|
| 135 |
def results():
|
| 136 |
+
"""List all results from the PostgreSQL database."""
|
| 137 |
+
conn = get_db_connection()
|
| 138 |
+
cursor = conn.cursor(cursor_factory=DictCursor)
|
| 139 |
+
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
|
| 140 |
+
results_data = cursor.fetchall()
|
| 141 |
+
cursor.close()
|
| 142 |
+
conn.close()
|
| 143 |
+
|
| 144 |
+
results_list = []
|
| 145 |
+
for record in results_data:
|
| 146 |
+
results_list.append({
|
| 147 |
+
'id': record['id'], # Assumes 'id' is your primary key column
|
| 148 |
+
'image_filename': record['image_filename'],
|
| 149 |
+
'prediction': record['prediction'],
|
| 150 |
+
'confidence': record['confidence'],
|
| 151 |
+
'gradcam_filename': record['gradcam_filename'],
|
| 152 |
+
'timestamp': record['timestamp']
|
| 153 |
+
})
|
| 154 |
+
|
| 155 |
+
return jsonify(results_list)
|
| 156 |
|
| 157 |
@app.route('/gradcam/<filename>')
|
| 158 |
def get_gradcam(filename):
|