Spaces:
Sleeping
Sleeping
add initial stuff
Browse files- Dockerfile +25 -0
- app.py +182 -0
- requirements.txt +2 -0
Dockerfile
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM diffusers/diffusers-pytorch-compile-cuda
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 6 |
+
|
| 7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 8 |
+
|
| 9 |
+
# Set up a new user named "user" with user ID 1000
|
| 10 |
+
RUN useradd -m -u 1000 user
|
| 11 |
+
|
| 12 |
+
# Switch to the "user" user
|
| 13 |
+
USER user
|
| 14 |
+
|
| 15 |
+
# Set home to the user's home directory
|
| 16 |
+
ENV HOME=/home/user \
|
| 17 |
+
PATH=/home/user/.local/bin:$PATH
|
| 18 |
+
|
| 19 |
+
# Set the working directory to the user's home directory
|
| 20 |
+
WORKDIR $HOME/app
|
| 21 |
+
|
| 22 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 23 |
+
COPY --chown=user . $HOME/app
|
| 24 |
+
|
| 25 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import (
|
| 4 |
+
StableDiffusionXLControlNetPipeline,
|
| 5 |
+
DiffusionPipeline,
|
| 6 |
+
StableDiffusionImg2ImgPipeline,
|
| 7 |
+
StableDiffusionInpaintPipeline,
|
| 8 |
+
StableDiffusionAdapterPipeline,
|
| 9 |
+
StableDiffusionControlNetPipeline,
|
| 10 |
+
StableDiffusionXLAdapterPipeline,
|
| 11 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 12 |
+
StableDiffusionXLInpaintPipeline,
|
| 13 |
+
ControlNetModel,
|
| 14 |
+
T2IAdapter,
|
| 15 |
+
)
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
dtype = torch.float16
|
| 20 |
+
device = torch.device("cuda")
|
| 21 |
+
|
| 22 |
+
pipeline_mapping = {
|
| 23 |
+
"SD T2I": (DiffusionPipeline, "runwayml/stable-diffusion-v1-5"),
|
| 24 |
+
"SD I2I": (StableDiffusionImg2ImgPipeline, "runwayml/stable-diffusion-v1-5"),
|
| 25 |
+
"SD Inpainting": (
|
| 26 |
+
StableDiffusionInpaintPipeline,
|
| 27 |
+
"runwayml/stable-diffusion-inpainting",
|
| 28 |
+
),
|
| 29 |
+
"SD ControlNet": (
|
| 30 |
+
StableDiffusionControlNetPipeline,
|
| 31 |
+
"runwayml/stable-diffusion-v1-5",
|
| 32 |
+
"lllyasviel/sd-controlnet-canny",
|
| 33 |
+
),
|
| 34 |
+
"SD T2I Adapters": (
|
| 35 |
+
StableDiffusionAdapterPipeline,
|
| 36 |
+
"CompVis/stable-diffusion-v1-4" "TencentARC/t2iadapter_canny_sd14v1",
|
| 37 |
+
),
|
| 38 |
+
"SDXL T2I": (DiffusionPipeline, "stabilityai/stable-diffusion-xl-base-1.0"),
|
| 39 |
+
"SDXL I2I": (
|
| 40 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 41 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 42 |
+
),
|
| 43 |
+
"SDXL Inpainting": (
|
| 44 |
+
StableDiffusionXLInpaintPipeline,
|
| 45 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 46 |
+
),
|
| 47 |
+
"SDXL ControlNet": (
|
| 48 |
+
StableDiffusionXLControlNetPipeline,
|
| 49 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 50 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
| 51 |
+
),
|
| 52 |
+
"SDXL T2I Adapters": (
|
| 53 |
+
StableDiffusionXLAdapterPipeline,
|
| 54 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 55 |
+
"TencentARC/t2i-adapter-canny-sdxl-1.0",
|
| 56 |
+
),
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def load_pipeline(
|
| 61 |
+
pipeline_to_benchmark: str,
|
| 62 |
+
use_channels_last: bool = False,
|
| 63 |
+
do_torch_compile: bool = False,
|
| 64 |
+
):
|
| 65 |
+
# Get pipeline details.
|
| 66 |
+
pipeline_details = pipeline_mapping[pipeline_to_benchmark]
|
| 67 |
+
pipeline_cls = pipeline_details[0]
|
| 68 |
+
pipeline_ckpt = pipeline_details[1]
|
| 69 |
+
|
| 70 |
+
# Load adapter if needed.
|
| 71 |
+
if "ControlNet" in pipeline_to_benchmark:
|
| 72 |
+
controlnet_ckpt = pipeline_details[2]
|
| 73 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 74 |
+
controlnet_ckpt, variant="fp16", torch_dtype=torch.float16
|
| 75 |
+
).to(device)
|
| 76 |
+
elif "Adapters" in pipeline_to_benchmark:
|
| 77 |
+
adapter_clpt = pipeline_details[2]
|
| 78 |
+
adapter = T2IAdapter.from_pretrained(
|
| 79 |
+
adapter_clpt, variant="fp16", torch_dtype=torch.float16
|
| 80 |
+
).to(device)
|
| 81 |
+
|
| 82 |
+
# Load pipeline.
|
| 83 |
+
if (
|
| 84 |
+
"ControlNet" not in pipeline_to_benchmark
|
| 85 |
+
or "Adapters" not in pipeline_to_benchmark
|
| 86 |
+
):
|
| 87 |
+
pipeline = pipeline_cls.from_pretrained(
|
| 88 |
+
pipeline_ckpt, variant="fp16", torch_dtype=dtype
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
elif "ControlNet" in pipeline_to_benchmark:
|
| 92 |
+
pipeline = pipeline_cls.from_pretrained(pipeline_ckpt, controlnet=controlnet)
|
| 93 |
+
elif "Adapters" in pipeline_to_benchmark:
|
| 94 |
+
pipeline = pipeline_cls.from_pretrained(pipeline_ckpt, adapter=adapter)
|
| 95 |
+
pipeline.to(device)
|
| 96 |
+
|
| 97 |
+
# Optionally set memory layout.
|
| 98 |
+
if use_channels_last:
|
| 99 |
+
pipeline.unet.to(memory_format=torch.channels_last)
|
| 100 |
+
|
| 101 |
+
if hasattr(pipeline, "controlnet"):
|
| 102 |
+
pipeline.controlnet.to(memory_format=torch.channels_last)
|
| 103 |
+
elif hasattr(pipeline, "adapter"):
|
| 104 |
+
pipeline.adapter.to(memory_format=torch.channels_last)
|
| 105 |
+
|
| 106 |
+
# Optional torch compilation.
|
| 107 |
+
if do_torch_compile:
|
| 108 |
+
pipeline.unet = torch.compile(
|
| 109 |
+
pipeline.unet, mode="reduce-overhead", fullgraph=True
|
| 110 |
+
)
|
| 111 |
+
if hasattr(pipeline, "controlnet"):
|
| 112 |
+
pipeline.controlnet = torch.compile(
|
| 113 |
+
pipeline.controlnet, mode="reduce-overhead", fullgraph=True
|
| 114 |
+
)
|
| 115 |
+
elif hasattr(pipeline, "adapter"):
|
| 116 |
+
pipeline.adapter = torch.compile(
|
| 117 |
+
pipeline.adapter, mode="reduce-overhead", fullgraph=True
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return pipeline
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def generate(
|
| 124 |
+
pipeline_to_benchmark: str,
|
| 125 |
+
num_images_per_prompt: int = 1,
|
| 126 |
+
use_channels_last: bool = False,
|
| 127 |
+
do_torch_compile: bool = False,
|
| 128 |
+
):
|
| 129 |
+
print("Start...")
|
| 130 |
+
print("Torch version", torch.__version__)
|
| 131 |
+
print("Torch CUDA version", torch.version.cuda)
|
| 132 |
+
|
| 133 |
+
pipeline = load_pipeline(
|
| 134 |
+
pipeline_to_benchmark=pipeline_to_benchmark,
|
| 135 |
+
use_channels_last=use_channels_last,
|
| 136 |
+
do_torch_compile=do_torch_compile,
|
| 137 |
+
)
|
| 138 |
+
for _ in range(3):
|
| 139 |
+
prompt = 77 * "a"
|
| 140 |
+
num_inference_steps = 20
|
| 141 |
+
start_time = time.time()
|
| 142 |
+
_ = pipeline(
|
| 143 |
+
prompt,
|
| 144 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 145 |
+
num_inference_steps=num_inference_steps,
|
| 146 |
+
).images
|
| 147 |
+
end_time = time.time()
|
| 148 |
+
|
| 149 |
+
print(f"For {num_inference_steps} steps", end_time - start_time)
|
| 150 |
+
print("Avg per step", (end_time - start_time) / num_inference_steps)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
with gr.Blocks() as demo:
|
| 154 |
+
do_torch_compile = gr.Checkbox(label="Enable torch.compile()?")
|
| 155 |
+
use_channels_last = gr.Checkbox(label="Use `channels_last` memory layout?")
|
| 156 |
+
pipeline_to_benchmark = (
|
| 157 |
+
gr.Dropdown(
|
| 158 |
+
list(pipeline_mapping.keys()),
|
| 159 |
+
value=["Stable Diffusion V1.5"],
|
| 160 |
+
multiselect=False,
|
| 161 |
+
label="Pipeline to benchmark",
|
| 162 |
+
),
|
| 163 |
+
)
|
| 164 |
+
batch_size = gr.Slider(
|
| 165 |
+
label="Number of images per prompt",
|
| 166 |
+
minimum=1,
|
| 167 |
+
maximum=16,
|
| 168 |
+
step=1,
|
| 169 |
+
value=1,
|
| 170 |
+
)
|
| 171 |
+
btn = gr.Button("Benchmark!").style(
|
| 172 |
+
margin=False,
|
| 173 |
+
rounded=(False, True, True, False),
|
| 174 |
+
full_width=False,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
btn.click(
|
| 178 |
+
fn=generate,
|
| 179 |
+
inputs=[pipeline_to_benchmark, batch_size, use_channels_last, do_torch_compile],
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
diffusers @ git+https://github.com/huggingface/diffusers
|