Spaces:
Running
on
A10G
Running
on
A10G
| from diffusers import DiffusionPipeline | |
| import torch | |
| import os | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| except: | |
| pass | |
| from PIL import Image | |
| import numpy as np | |
| import gradio as gr | |
| import psutil | |
| import time | |
| SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
| TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| # check if MPS is available OSX only M1/M2/M3 chips | |
| mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
| xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
| device = torch.device( | |
| "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
| ) | |
| torch_device = device | |
| torch_dtype = torch.float16 | |
| print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
| print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
| print(f"device: {device}") | |
| if mps_available: | |
| device = torch.device("mps") | |
| torch_device = "cpu" | |
| torch_dtype = torch.float32 | |
| if SAFETY_CHECKER == "True": | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", revision="pr/4") | |
| else: | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/sdxl-turbo", revision="pr/4", safety_checker=None | |
| ) | |
| pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| pipe.set_progress_bar_config(disable=True) | |
| def predict(prompt, steps, seed=1231231): | |
| generator = torch.manual_seed(seed) | |
| last_time = time.time() | |
| results = pipe( | |
| prompt=prompt, | |
| generator=generator, | |
| num_inference_steps=steps, | |
| guidance_scale=0.0, | |
| width=512, | |
| height=512, | |
| # original_inference_steps=params.lcm_steps, | |
| output_type="pil", | |
| ) | |
| print(f"Pipe took {time.time() - last_time} seconds") | |
| nsfw_content_detected = ( | |
| results.nsfw_content_detected[0] | |
| if "nsfw_content_detected" in results | |
| else False | |
| ) | |
| if nsfw_content_detected: | |
| gr.Warning("NSFW content detected.") | |
| return Image.new("RGB", (512, 512)) | |
| return results.images[0] | |
| css = """ | |
| #container{ | |
| margin: 0 auto; | |
| max-width: 40rem; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| text-align: center; | |
| margin: 0 auto; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="container"): | |
| gr.Markdown( | |
| """# SDXL Turbo - Text To Image | |
| ## Unofficial Demo | |
| SDXL Turbo model can generate high quality images in a single pass read more on [stability.ai post](https://stability.ai/news/stability-ai-sdxl-turbo). | |
| **Model**: https://huggingface.co/stabilityai/sdxl-turbo | |
| """, | |
| elem_id="intro", | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| placeholder="Insert your prompt here:", scale=5, container=False | |
| ) | |
| generate_bt = gr.Button("Generate", scale=1) | |
| image = gr.Image(type="filepath") | |
| with gr.Accordion("Advanced options", open=False): | |
| steps = gr.Slider(label="Steps", value=2, minimum=1, maximum=10, step=1) | |
| seed = gr.Slider( | |
| randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 | |
| ) | |
| with gr.Accordion("Run with diffusers"): | |
| gr.Markdown( | |
| """## Running SDXL Turbo with `diffusers` | |
| ```bash | |
| pip install diffusers==0.23.1 | |
| ``` | |
| ```py | |
| from diffusers import DiffusionPipeline | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/sdxl-turbo", revision="refs/pr/4" | |
| ).to("cuda") | |
| results = pipe( | |
| prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe", | |
| num_inference_steps=1, | |
| guidance_scale=0.0, | |
| ) | |
| imga = results.images[0] | |
| imga.save("image.png") | |
| ``` | |
| """ | |
| ) | |
| inputs = [prompt, steps, seed] | |
| generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
| demo.queue() | |
| demo.launch() | |